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Abstract
This paper presents a quadrature method for evaluating layer potentials in two dimen-
sions close to periodic boundaries, discretized using the trapezoidal rule. It is an
extension of themethod of singularity swap quadrature, which recentlywas introduced
for boundaries discretized using composite Gauss–Legendre quadrature. The original
method builds on swapping the target singularity for its preimage in the complexified
space of the curve parametrization, where the source panel is flat. This allows the
integral to be efficiently evaluated using an interpolatory quadrature with a monomial
basis. In this extension, we use the target preimage to swap the singularity to a point
close to the unit circle. This allows us to evaluate the integral using an interpolatory
quadrature with complex exponential basis functions. This is well-conditioned, and
can be efficiently evaluated using the fast Fourier transform. The resulting method has
exponential convergence, and can be used to accurately evaluate layer potentials close
to the source geometry. We report experimental results on a simple test geometry, and
provide a baseline Julia implementation that can be used for further experimentation.

Keywords Nearly singular · Quadrature · Layer potential · Singularity swap ·
Trapezoidal

Mathematics Subject Classification 65D30 · 65D32 · 65R20

1 Introduction

In integral equation methods, one of the long-standing challenges is the evaluation
of layer potentials for targets points close to the source geometry. The integrals by
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which these layer potentials are computed are referred to as nearly singular, since the
integrand is evaluated close to a singularity. This near singularity reduces the smooth-
ness of the integrand, thereby severely reducing the accuracy of common quadrature
rules such as Gauss–Legendre and the trapezoidal rule. To tackle this, many spe-
cialized quadrature methods have been proposed for the case of the domain being a
one-dimensional line. For panel-based Gauss–Legendre quadrature in the plane, the
high-order method of [1] (often referred to as the Helsing–Ojala method) is efficient
and well-established. For the trapezoidal rule, which is exponentially convergent on a
closed curve, several fixed-order methods have been proposed that reduce the impact
of the near singularity by means of a local correction, see e.g. [2–4]. In addition, expo-
nentially convergent near evaluation is available through the “globally compensated”
quadrature method introduced in [1] and extended in [5].

Recently, the method of singularity swap quadrature (SSQ) was proposed in [6].
The method evaluates nearly singular line quadratures in two and three dimensions
by first “swapping” the singularity from the target point in the plane to the preimage
of the target point in the curve’s parametrization. After the swap, the integral can be
evaluated using interpolatory quadrature with a monomial basis, following the method
of [1]. This was shown to improve the accuracy for curved panels compared to [1],
and allowed the method to be extended to line integrals in three dimensions.

The SSQ method was in [6] described for curves discretized using panel-based
Gauss–Legendre quadrature. In this brief follow-up, we show how the method can be
extended to closed curves in the plane that have been discretized using the trapezoidal
rule, resulting in a global correction with exponential convergence. In doing so, we
assume that the reader has at least some familiarity with the original method.

An essential component of our method is the use of trigonometric interpolation.
For the logarithmic kernel, it can therefore be viewed as an extension of the product
quadrature of Kress [7] to the nearly singular case. This was also noted by Bao et
al. [8], who have proposed an extension of SSQ for the trapezoidal rule, in parallel
with and independent of this work. Their approach starts with a Laurent expansion
of the kernel on the unit circle, whereas the present work uses a Fourier expansion
after singularity swapping, but they arrive at a method that appears equivalent to the
present work for the logarithmic and Cauchy kernels. This corresponds to integrals IL
and I1 below; they do not consider higher order singularities. In addition, they study
application of the method on non-periodic integrals and the Helmholtz equation.

2 Method

Since we are considering the problem in two dimensions, let us identify R
2 with C,

and let Γ be a closed curve parametrized by a smooth function γ (t) = g1(t)+ ig2(t),
with t ∈ [0, 2π). Furthermore, let σ be a smooth function defined onΓ , which we will
refer to as the density. With some abuse of notation, we will denote σ(t) = σ(γ (t)).
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For a point z ∈ C, typically lying close to Γ , our integrals of interest are here

IL = IL(z) :=
∮

Γ

σ(τ) log |τ − z| |dτ | , (1)

Im = Im(z) :=
∮

Γ

σ(τ)dτ

(τ − z)m
, m = 1, 2, . . . . (2)

Being periodic, these integrals are suitable for discretization using an N-point trape-
zoidal rule, due to its exponential convergence [9]. The quadrature nodes are then
γ (t j ), j = 0, . . . , N − 1, with t j = 2π j/N and the quadrature weights w j = 2π/N .
We will now outline how these discretized integrals can be evaluated using SSQ.
Throughout, we will assume that we only have access to the discrete values of the
functions σ , γ and γ ′ at the nodes, and not to their analytic definitions.

2.1 The Cauchy integral

We begin with the simplest (and perhaps most common) case, the Cauchy integral,

I1(z) =
∮

Γ

σ(τ)dτ

τ − z
=

∫ 2π

0

σ(t)γ ′(t)dt
γ (t) − z

. (3)

Let us now assume that z is close to Γ , which corresponds to the integrand in (3)
having a singularity close to the real line at the preimage t� ∈ C such that

γ (t�) = z, (4)

under the complexification of γ . In Klinteberg et al. [10] and Barnett [11], it is shown
that this significantly reduces the convergence rate of the trapezoidal rule, with the
error being proportional to e−N | Im t�|. In order to reduce the error for small Im t�, we
will now show how to evaluate I1(z) using SSQ.

Step one is to find the preimage t� that satisfies (4). Geometrically, the complexifica-
tion of γ corresponds to following curved lines that extend fromΓ in an approximately
normal direction (see e.g. [10, fig. 4]). There are many different methods available for
finding t�. Noteworthy examples include the local and global approximations used
together with Newton’s method in [10], and the novel quadrature-based method intro-
duced in [8]. Studying the merits of the various approaches is beyond the scope of this
work. However, we note that the computationally most efficient method probably is
to use a local expansion, such as a truncated Taylor expansion of γ at each grid point.

For simplicity we will here use a global approximation for finding t�. This cor-
responds to Newton’s method applied to a Fourier expansion of γ . We apply a Fast
Fourier Transform (FFT) to the node values γ (t0), . . . , γ (tN−1) to get the truncated
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Fourier series

γ (t) ≈
K∑

k=−K

γ̂ke
ikt , (5)

γ ′(t) ≈
K∑

k=−K

ikγ̂ke
ikt , (6)

where K = N−1
2 , assuming N odd, and γ̂k are the Fourier coefficients of γ . This has

a one-time cost ofO(N log N ), for a given discretization. Substituting this expansion
into (4), we can find t� at an O(N ) cost using Newton’s method (assuming O(1)
iterations to convergence). A good initial guess for t� is the corresponding t-value of
the grid point on Γ that is closest to z,

t� ≈ arg min
t j

∣∣γ (t j ) − z
∣∣ . (7)

We assume that Γ is parametrized in a counter-clockwise direction, so that Im t� > 0
implies z interior to Γ , and vice versa.

Step two is to swap out the singularity using a function that regularizes the integrand,
and leads to an integrable singularity. Contrary to the Gauss–Legendre panel case, we
can not regularize the denominator (γ (t) − γ (t�))−1 using the factor (t − t�), as the
latter is not periodic. Instead, we use (eit − eit

�
), which corresponds to swapping the

singularity to a point close to the unit circle (this will be evident shortly). Then,

I1(z) =
∫ 2π

0

σ(t)γ ′(t)
(
eit − eit

�
)

γ (t) − γ (t�)︸ ︷︷ ︸
f (t,t�)

dt

eit − eit�
. (8)

The function f is now the original integrand with the singularity at t� removed,

lim
t→t�

f (t, t�)
(
γ (t) − γ (t�)

) = 0, (9)

and we expect f to be smooth. Since its values are known at the equidistant nodes
t0, . . . , tN−1, we use an FFT to compute its truncated Fourier series (at anO(N log N )

cost), such that

I1(z) ≈
K∑

k=−K

f̂k(t
�)

∫ 2π

0

eiktdt

eit − eit�︸ ︷︷ ︸
pk (t�)

= f̂ · p. (10)

This can be interpreted as our integral being approximated by an interpolatory quadra-
ture on the unit circle,whichwe can evaluate to high accuracy as long as the coefficients
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f̂k decay sufficiently fast. The integrals pk can be evaluated analytically (at an O(N )

cost) by rewriting them as contour integrals on the unit circle S. Let

ξ(t) = eit , (11)

ξ ′(t) = ieit , (12)

ζ = eit
�

. (13)

Then eikt = ξ(t)k and

pk(t
�) = 1

i

∫ 2π

0

ei(k−1)t ieitdt

eit − eit�
(14)

= 1

i

∫ 2π

0

ξ(t)k−1ξ ′(t)dt
ξ(t) − ζ

(15)

= 1

i

∮
S

ξ k−1dξ

ξ − ζ
. (16)

We can evaluate this integral using the residue theorem. If |ζ | < 1 (or equivalently
Im t� > 0, corresponding to z being an interior point), then the integrand has a simple
pole at ζ , with residue

Res

[
ξ k−1

ξ − ζ
, ζ

]
= ζ k−1, if |ζ | < 1. (17)

In addition, if k ≤ 0, then the integrand has a pole of order 1 − k at the origin, with
residue

Res

[
ξ k−1

ξ − ζ
, 0

]
= −ζ k−1, if k ≤ 0. (18)

The two residues cancel for k ≤ 0 and |ζ | < 1 (i.e. Im t� > 0), so we get

pk(t
�) = 2πei(k−1)t�

⎧⎪⎨
⎪⎩
1, if Im t� > 0 and k ≥ 1,

−1, if Im t� < 0 and k ≤ 0,

0, otherwise.

(19)

This completes the method, which has a total cost ofO(N +N log N ) per target point.
The method can perhaps be understood in terms of Fourier coefficients. The accu-

racy of the trapezoidal rule depends on the regularity of the integrand, which in term
is reflected in the decay of the Fourier coefficients of the integrand. As seen in Fig. 1,
these appear to decay as e−|k Im t�|. In contrast, the coefficients f̂k(t�) decay rapidly
and with a rate that stays nearly constant as z → Γ .

A weakness of the method is that in order to find t�, one must evaluate the analytic
continuation of γ using a truncated Fourier series, which naturally is most accurate
close to Γ . For z far away from Γ the rootfinding process will struggle, and the
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Fig. 1 Example results for the Cauchy integral on the starfish geometry and density from Sect. 3.2, for
two different t�. The Fourier coefficients of the integrand in (3) decay approximately as ρ−|k|, where
ρ = e| Im t0|, meaning that the decay rate worsens as z → Γ . On the other hand, the coefficients of the
regularized function f in (10) decay rapidly, with a rate that stays approximately constant as z → Γ . Note
that F in the legend denotes Fourier coefficients, i.e. F[ f ](k) = f̂k

accuracy of SSQ can in some cases deteriorate. However, this typically happens at
ranges where the base trapezoidal rule is sufficiently accurate by a wide margin, and
can be avoided by a coarse filter that only tries to find t� for points that are within a
cutoff distance from Γ based on the grid spacing h.

Remark 1 The reader may note that one could in fact apply a variant of the Helsing–
Ojala quadrature directly to (3). First solve the interpolation problem

K∑
k=−K

ckτ
k
i = σi , i = 0, . . . , N − 1, (20)

where τi = γ (ti ) and σi = σ(ti ). Then evaluate the layer potential as

I1(z) =
K∑

k=−K

ck

∮
Γ

τ kdτ

τ − z
, (21)

where the integrals can be exactly evaluated using residue calculus, just as is done
above for the unit circle. This will in fact work perfectly fine for some geometries (the
unit circle in particular), but the interpolation problem can be severely ill-conditioned
in a way that is hard to control, since it depends on the geometry itself. This could
potentially be investigated further, but that is deemed beyond the scope of this work.

2.2 Higher order integrals

For higher order integrals (m > 1), we have

Im(z) =
∮

Γ

σ(τ)dτ

(τ − z)m
=

∫ 2π

0

σ(t)γ ′(t)dt
(γ (t) − z)m

, m ∈ N
∗. (22)
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Evaluating this integral with SSQ is completely analogous to the case when m = 1,
with the difference that we instead regularize with (eit − eit

�
)m , such that

f (t, t�) = σ(t)γ ′(t)
(

eit − eit
�

γ (t) − γ (t�)

)m

. (23)

It is worth noting that the Fourier coefficients f̂k of this definition of f decay like
those in Fig. 1, with a rate that is independent ofm. Once we have them, we next need
expressions for the integrals

pmk (t�) = 1

i

∮
S

ξ k−1dξ

(ξ − ζ )m
. (24)

Evaluating the residues in the same way as for the m = 1 case, we get the general
expression for integer m ≥ 1,

pmk (t�) = 2π

∏m−1
j=1 (k − j)

(m − 1)! ei(k−m)t�

⎧⎪⎨
⎪⎩
1, if Im t� > 0 and k ≥ m,

−1, if Im t� < 0 and k ≤ 0,

0, otherwise.

(25)

2.3 Log kernel

Consider now the log integral, also known as the Laplace single-layer potential, for a
real-valued density σ ,

IL(z) =
∮

Γ

σ(τ) log |τ − z| |dτ | (26)

=
∫ 2π

0
σ(t)|γ ′(t)|︸ ︷︷ ︸

f (t)

log |γ (t) − z|dt, (27)

where f is assumed to be a smooth function. Proceeding in a similar fashion as before,
we find t� and separate the integral as

IL(z) =
∫ 2π

0
f (t)

(
log |γ (t) − z| − log |eit − eit

� |
)
dt +

∫ 2π

0
f (t) log |eit − eit

� |dt .
(28)

The first integral is now regularized, and can be evaluated using the trapezoidal
rule. The second integral we rewrite using a truncated Fourier series and the rela-
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tion log |r | = Re log r , such that we can evaluate it using SSQ,

∫ 2π

0
f (t) log |eit − eit

� |dt ≈ Re
K∑

k=−K

f̂k

∫ 2π

0
eikt log(eit − eit

�

)dt
︸ ︷︷ ︸

qk (t�)

= f̂ · q. (29)

Just as with pk , the integrals qk can be transformed into integrals on the unit circle,

qk(t
�) = 1

i

∫
S
ξ k−1 log(ξ − ζ )dξ. (30)

Note that this is not necessarily a closed contour integral, as there is a branch cut in the
complex logarithm that needs to be taken into account. We will now show to evaluate
qk(t�) depending on the sign of Im t�.

2.3.1 Im t� < 0

Beginning with the case |ζ | > 1 (or Im t� < 0), we note that ξ − ζ 	= 0 on the entire
unit disc. We can therefore choose the branch cut of the complex logarithm such that
it never intersects the unit circle. This choice allows us to evaluate the integral in (30)
as a contour integral on the unit circle, with a possible pole of order 1−k at the origin,

1

2π i

∮
S
ξ k−1 log(ξ − ζ )dξ = Res

[
ξ k−1 log(ξ − ζ ), 0

]
=

⎧⎪⎨
⎪⎩

ζ k/k if k < 0,

log(−ζ ) if k = 0,

0 if k > 0.
(31)

Since f̂0 ∈ R, we only need the real part of qk at k = 0. We then have that q is for
Im t� < 0 computed as

qk(t
�) = 2π

⎧⎪⎨
⎪⎩

1
k e

ikt� if k < 0,

− Im t� if k = 0,

0 if k > 0.

(32)

2.3.2 Im t� > 0

We are now left with the case |ζ | < 1 (or Im t� > 0). Here, ξ − ζ = 0 at a point on the
unit disk, so the integral of log(ξ − ζ ) on the unit circle must intersect the branch cut
in the ξ plane going from ζ to infinity. We choose the branch cut such that it passes
through the point ξ = 1. We define 1+ and 1− to be the limits approaching 1 from
above and below in the plane, such that

log(1− − ζ ) = log(1+ − ζ ) + 2π i . (33)
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Then the integral on the unit circle S is,

qk(t
�) = 1

i

∫ 1−

1+
ξ k−1 log(ξ − ζ )dξ. (34)

In order to evaluate this, we let C be the closed contour following the unit circle from
1+ to 1−, then going from 1− to ζ on the negative side of the branch cut, and then
going from ζ to 1+ on the positive side of the branch cut,

∮
C

=
∫ 1−

1+
+

∫ ζ

1−
+

∫ 1+

ζ

. (35)

The integrand is analytic inside C , except for a pole of order 1− k at the origin when
k ≤ 0, with residue given by (31). The integrals along the branch cut are

∫ ζ

1−
+

∫ 1+

ζ

=
∫ ζ

1
ξ k−1 (log(ξ − ζ ) + 2π i) dξ +

∫ 1

ζ

ξ k−1 log(ξ − ζ )dξ (36)

= 2π i

{
log(ζ ) if k = 0,

(ζ k − 1)/k otherwise.
(37)

Combining the results, and just as before keeping only the real part of the k = 0
integral, we arrive at the final results for Im t� > 0,

qk(t
�) = 2π

k

⎧⎪⎨
⎪⎩
1 if k < 0,

0 if k = 0,

(1 − eikt
�
) if k > 0.

(38)

2.4 Computing weights at linear cost

We sometimes wish to evaluate our target integrals (1) and (2) multiple times for the
same density σ . Instead of computing the Fourier components f̂k(t�) every time, we
can then compute the corresponding quadrature weights wm

j (t�) once and reuse them
later. For the power-law kernel (2), this corresponds to

Im(z) ≈
K∑

k=−K

f̂k(t
�)pmk (t�) =

N−1∑
j=0

f (t j , t
�)wm

j (t�). (39)

We expand the discrete Fourier transform, where ω = e−2π i/N ,

N−1∑
j=0

f (t j , t
�)wm

j (t�) = 1

N

K∑
k=−K

N−1∑
j=0

f (t j , t
�)ω jk pmk (t�). (40)
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Rearranging, we can identify the weights as

wm
j (t�) = 1

N

K∑
k=−K

pmk (t�)ω jk, (41)

which can be computed using an FFT. The process is completely analogous for the
log kernel (1). However, for the power-law kernel it is possible express the weights in
closed form. Substituting pmk using (25) and inserting ω jk = e−ikt j ,

wm
j (t�) = 2π

N

e−imt�

(m − 1)!
K∑

k=−K

m−1∏
j=1

(k − j)eik(t
�−t j )

⎧⎪⎨
⎪⎩
1, if Im t� > 0 and k ≥ m,

−1, if Im t� < 0 and k ≤ 0,

0, otherwise.
(42)

We can write this more compactly as

wm
j (t�) = 2π

N

e−imt�

(m − 1)! Sm
(
ei(t

�−t j )
)

, (43)

where Sm is defined as follows: Letting r = ei(t
�−t j ), for Im t� > 0

Sm(r) =
K∑

k=m

m−1∏
s=1

(k − s)rk =
K∑

k=m

rm
dm−1

drm−1 r
k−1 (44)

= rm
dm−1

drm−1

K∑
k=m

rk−1 (45)

= rm
dm−1

drm−1

r K − rm−1

r − 1
, (46)

where the last step is given by the closed form of a geometric sum. Similarly, for
Im t� < 0 we have that

Sm(r) = −
0∑

k=−K

m−1∏
s=1

(k − s)rk = rm
dm−1

drm−1

r−(K+1) − 1

r − 1
. (47)

With (43) together with (46) and (47), we thus have compact closed-form expressions
that allow us to compute wm

j and evaluate (2) at anO(N ) cost. They can be evaluated
and implemented for any m, preferably using a symbolic toolbox (see e.g. the accom-
panying code [12]). An equivalent closed-form expression was also derived in [8] for
the case m = 1.

The above simplification to a closed form expression is unfortunately not possible
for the log kernel, where the summation terms are of the form rk/k. Instead we still
have to rely on using the FFT.
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Fig. 2 Error in the Laplace double-layer potential on a domain with N = 400 points on the boundary,
comparison between the trapezoidal rule and SSQ

3 Experiments

In order to demonstrate themethod outlined above, we here report experimental results
for the bynowwell-known“starfish” geometryγ (t) = (1+0.3 cos 5t)eit ,γ ∈ [0, 2π).
The method has been implemented in Julia [13], and is available online as open source
on GitHub together with the scripts that produce the numerical in this manuscript [12].

3.1 Laplace double-layer potential

As a first demonstration, we reuse the Laplace test problem from [6]. That is, we
evaluate the solution to the Laplace equation Δu = 0 in the domain bounded by Γ ,
with boundary condition u = ue(z) = log |3 + 3i − z|. The solution to this problem
can be represented using the Laplace double-layer potential (DLP) u(z) = Im I1(z),
which leads to a second-kind integral equation in the real-valued density σ . Once this
integral equation is solved, the layer potential u(z) can be evaluated in the domain
using quadrature, and compared to the exact solution ue(z).

In Fig 2 we show results for the Laplace DLP when Γ is discretized using N = 400
points that are equidistant in the parametrization t . This results in a density that is
resolved to machine precision, as measured by the decay of its Fourier coefficients.
The layer potential is evaluated using the trapezoidal rule on a 400 × 400 grid inside
the domain, but for points close to the boundary we also evaluate using SSQ and
compare the results. As expected, evaluation using the trapezoidal rule leads to errors
on the level of machine precision in the interior of the domain andO(1) errors near the
boundary, while SSQ is accurate at all points where it is used. However, full machine
precision accuracy is not recovered; the maximum error in SSQ close to the boundary
is O(10−13). The reason for this loss of precision is not known, but it is in line with
the results when applying SSQ to Gauss–Legendre panels [6].

In Fig. 3, we repeat the above experiment with N = 150 points, which results in
the density σ not being fully resolved. Here the far-field error is O(10−10), but SSQ
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Fig. 3 Error in the Laplace double-layer potential on a domain with N = 150 points on the boundary,
comparison between the trapezoidal rule and SSQ

is not able to recover more than five digits of accuracy near the convex regions with
high curvature. This is also a phenomenon whose exact cause is not known, but which
is in line with the original SSQ algorithm.

3.2 Convergence

For a more systematic investigation of the method, we create the following setup.
Let Γ be the starfish domain from the previous section, and discretize it using N
points. We then create 100 evaluation points as z = γ (t�), where Re t� ∈ [0, 2π)

and Im t� = d. In order to test points both interior and exterior to Γ , we use d =
{±0.01,±0.02,±0.04}. For a range of N , we then compute the integrals IL , I1, I2, I3
using both trapezoidal and singularity swap quadrature, and for each N save the
maximum error across all z. The density σ and reference solution used are:

• For IL we use the σ(t) = g1(t)g2(t) and compute the reference solution using
adaptiveGauss-Kronrod quadrature (as implemented in the Julia packageQuadGK
[14]).

• For Im and interior points (Im t� > 0) we use σ(τ) = τ 3 + τ , with reference
solution Im(z) = 2π iσ (m)(z)/(m − 1)!.

• For Im and exterior points (Im t� < 0) we use σ(τ) = τ−1, with reference solution
Im(z) = 2π i z−m .

The density σ is a smooth function in all of the above cases. For IL and for Im with
interior points it is fully resolved when N is very small. For Im with exterior points it
is fully resolved when N ≈ 200.

The results of this investigation are shown in Fig. 4. As expected, the convergence
rate of the original trapezoidal rule depends strongly on the distance to the boundary.
In contrast, the convergence rate for SSQ should not depend on the distance to the
boundary if the singularity is perfectly swapped. Here, this is indeed the case for
the exterior points, where the rate of convergence reflects the resolution of the smooth

123



BIT Numerical Mathematics (2024) 64 :11 Page 13 of 15 11

Fig. 4 Convergence of the trapezoidal rule and SSQ for the log kernel and m = 1, 2, 3, measured as the
maximum error on a set of target points such that Im t� = d. Left column shows interior points, right
column shows exterior points
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integrand. There appears to be aweak dependence between the rate and the distance for
interior points, but that could be an effect of the chosen test problem.More concerning
is that lowest attainable error appears to increase for smallerd whenm > 1. It is unclear
what causes this effect, although in experiments there appears to be an upper bound
to the error growth.

4 Conclusions

We have extended the singularity swap quadrature (SSQ, [6]) method to closed 2D
curves discretized using the trapezoidal rule. This extension builds on the simple obser-
vation that interpolatory quadrature can be used on a periodic integrand if the problem
is first swapped to the unit circle. The method relies on representing quantities as
Fourier expansions, and relies on the fast Fourier transform (FFT) for precomputation
on the geometry and, in case of the logarithmic kernel, for evaluation. For the power-
law kernel, closed form expressions are derived such that the FFT is not needed at
evaluation time.

The method is accurate, exponentially convergent, and relatively simple to imple-
ment (and we provide source code). The fact that the cost isO(N ) (for power-law) or
O(N log N ) (for log) per target point makes the method unfeasible for large problems,
but that is a consequence of the underlying trapezoidal rule being global (and exponen-
tially convergent). For maximum efficiency, composite Gauss–Legendre quadrature
with the original SSQ likely remains the better option.

In the original SSQ paper, it was shown that the method can be applied to line
integrals in 3D by finding the singularity preimage through analytic continuation of the
squared-distance function. The same technique can be applied to the present method,
for closed curves in three dimensions. What remains is analytical evaluation of the
integrals of the interpolatory quadrature. This is straightforward for the logarithmic
kernel, but the integrals corresponding to power-law kernels are more challenging.
Deriving expressions for these is currently work in progress.
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