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Abstract
Panel-based, kernel-split quadrature is currently one of the most efficient methods
available for accurate evaluation of singular and nearly singular layer potentials in
two dimensions. However, it can fail completely for the layer potentials belonging to
the modified Helmholtz, modified biharmonic, and modified Stokes equations. These
equations depend on a parameter, denoted α, and kernel-split quadrature loses its
accuracy rapidly when this parameter grows beyond a certain threshold. This paper
describes an algorithm that remedies this problem, using per-target adaptive sampling
of the source geometry. The refinement is carried out through recursive bisection,
with a carefully selected rule set. This maintains accuracy for a wide range of the
parameter α, at an increased cost that scales as logα. Using this algorithm allows
kernel-split quadrature to be both accurate and efficient for a much wider range of
problems than previously possible.
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1 Introduction

This paper presents an extension of the panel-based, kernel-split quadrature scheme
by Helsing and Ojala [13], for evaluating singular and nearly singular layer potentials
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in two dimensions. It is one of the current state of the art methods for maintaining low
errors when solving homogeneous elliptic partial differential equations (PDEs) in two
dimensions using integral equation methods [11, 13, 17]. However, there exists a set
of problems for which this scheme can fail completely. This includes the following
PDEs in R2:

(� − α2)u = 0, modified Helmholtz, (1)

�(� − α2)u = 0, modified biharmonic, (2)

(� − α2)u − ∇p = 0, modified Stokes (subject to ∇ · u = 0), (3)

where α is a positive real number. For brevity, we refer to them as themodified PDEs.
Note that they are not consistently named in the literature. For example, the modi-
fied Helmholtz equation is also known as the screened Poisson equation, the Yukawa
equation, the linearized Poisson-Boltzmann equation, and the Debye-Hückel equa-
tion. Meanwhile, the modified Stokes equations are also known as the Brinkman
equations. These PDEs appear in many different applications: electrostatic interac-
tions in protein and related biological functions, macroscopic electrostatics, and fluid
flow on the microscale, to mention a few [7, 12, 14, 15, 19, 20].

A common trait of the modified PDEs is that their associated layer potentials have
kernels that either decay exponentially or have components that decay exponentially,
with a rate that is proportional to α. This decay presents a problem for the abovemen-
tioned kernel-split quadrature. In short, the quadrature method is based on writing the
kernel on a form with smooth functions multiplying explicit singularities, and then
integrating each term separately. In order to be accurate, these smooth functions have
to be locally well approximated by polynomials, which is increasingly difficult for
larger values of α.

Large values of α are of interest in the context of elliptic marching. In elliptic
marching, a semi-implicit temporal discretization is applied to the governing equa-
tions. A time-step then involves solving a sequence of elliptic equations, such as the
modified PDEs: e.g., the heat equation, the time-dependent Stokes and Navier-Stokes
equations correspond to the modified Helmholtz equation, the modified biharmonic
equation, and the modified Stokes equations, respectively [3, 6, 8, 9]. Regardless of
the specifics of the time-discretization scheme, the resulting equations involve the
parameter α, where α2 is inversely proportional to the time-step size. The smaller the
time-step, the lower the temporal error, but the spatial problem becomes harder to
solve accurately. This is a new problem in the context of elliptic marching, combined
with boundary integral methods applied to the resulting modified PDEs. Earlier, high-
order and accurate schemes were not available; thus, small time-steps were redundant
since the spatial error dominated, and the low-error regimes were not feasible to
explore on standard desktop computers. Today, efficient methods are available that
give higher precision and allow for more complicated problems. It is evident that the
restriction of the time-step is a significant bottleneck, as the kernel-split quadrature
may fail for high temporal resolutions.

We have developed a robust quadrature scheme, based on adaptive refinement, that
maintains high accuracy for any α, without sacrificing efficiency. It applies to target
points both on and close to the boundary, where regular quadrature is insufficient.
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In this context, refinement refers simply to an interpolation of known quantities to
a locally refined discretization, as opposed to increasing the number of degrees of
freedom in the discretized integral equation. The additional cost, in terms of assembly
time per panel, scales as O(logα).

The remainder of this paper is organized as follows. In Section 2, we give an
outline of the kernel-split quadrature. Section 3 describes the problem that we are
trying to solve, using the modified Helmholtz equation as an example. In Section 4,
we present error analysis, again with the modified Helmholtz equation as template.
The new algorithm we propose is presented in Section 5, followed by numerical
results in Section 6.

2 Background

Our goal is to evaluate layer potentials in R2 of the form

u(x) =
∫

∂�

G(x, y)σ (y) dS(y). (4)

The layer density σ(y) is assumed to be smooth, implying that the boundary is
assumed to be smooth as well. The kernel G(x, y) is singular at x = y and can be
expressed with explicit singularities as

G(x, y) = GS(x, y) + GL(x, y) log
∣∣y − x

∣∣ + GC(x, y)
(y − x) · n̂(y)∣∣y − x

∣∣2 , (5)

where GS is a smooth function. The functions GL and GC are smooth functions that
multiply a log-type singularity and a Cauchy-type singularity, respectively. We refer
to this decomposition as kernel-split.

The boundary ∂� is discretized using a composite Gauss–Legendre quadrature. It
is subdivided into intervals �i , denoted panels,

∂� =
⋃
i

�i . (6)

Each panel �i is described by a parametrization γi ,

�i =
{
γi(t) ∈ R

2| t ∈ [−1, 1]
}
. (7)

We refer to x in (4) as a target point and a point y as a source point. A panel to
which a source point belongs is referred to as a source panel. Associated with the
parametrization is a speed function si(t) = ∣∣γ ′

i (t)
∣∣, a normal vector n̂i (t), and the

curvature κi(t). Introducing the convenience notation σi(t) = σ(γi(t)), the layer
potential from a panel �i becomes

∫
�i

G(x, y)σ (y) dS(y) =
∫ 1

−1
G
(
x, γi(t)

)
σi(t)si(t) dt . (8)

Each panel is discretized in the parametrization variable t using the nodes and
weights (tGj , λG

j ) of an n-point Gauss–Legendre quadrature rule on the canonical
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interval [−1, 1], which is of order 2n, such that on each panel we have the discrete
quantities

yij = γi(t
G
j ), (9)

n̂ij = n̂i (t
G
j ), (10)

σij = σ
(
γi(t

G
j )

)
, (11)

sij =
∣∣∣γ ′

i (t
G
j )

∣∣∣ , (12)

κij = κi(t
G
j ). (13)

Omitting the panel index i, the layer potential contribution from a panel � is then
computed using the approximation∫

�

G(x, y)σ (y) dS(y) ≈
n∑

j=1
G
(
x, yj

)
σj sjλ

G
j . (14)

Due to the singularities in G, the above formula requires x to be well-separated
from � in order to be accurate (see Section 5, paragraph Near evaluation criterion).
Otherwise, the scheme of [11] is used, known as product integration. With that,
target-specific quadrature weights wL and wC of order n are computed for the known
singularities where needed, such that∫

�

f (x, y) log
∣∣y − x

∣∣ dS(y) ≈
n∑

j=1
f (x, yj )w

L
j (x), (15)

∫
�

f (x, y)
(y − x) · n̂(y)∣∣y − x

∣∣2 dS(y) ≈
n∑

j=1
f (x, yj )w

C
j (x). (16)

Substituting (5) into (4) and applying the above product integration give the so-called
kernel-split quadrature scheme. Depending on the location of the target point x rel-
ative to the source panel �, the evaluation can be divided up into three different
cases:

1. Singular, with self-interaction. If x ∈ � is one of the quadrature nodes, x = yi ,
then the term multiplying GC is smooth, with the limit

lim
x→y

x,y∈∂�

(y − x) · n̂(y)∣∣y − x
∣∣2 = −κ(y)

2
, (17)

where κ(y) is the curvature of ∂� at y. Applying product integration to the GL

term, we get

∫
�

G(yi , y)σ (y) dS(y)≈
n∑

j=1
j �=i

[
G(yi , yj )σj sj λ

G
j + GL(yi , yj )σj

(
wL

j (yi )−sj log
∣∣yj −yi

∣∣ λG
j

)]

+GS(yi , yi ) + GL(yi , yi )σiw
L
i (yi ) − GC(yi , yi )

κ(yi )
2 .

(18)
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Note that this is the only case where GS is evaluated explicitly, and only in one
point.

2. Singular, without self-interaction. If x ∈ ∂� is either on the source panel �

but not a quadrature node, or on a neighboring panel, then the GC term is still
smooth, and we do not have to take the limit at x → y into account. This lets us
simplify the above to

∫
�

G(x, y)σ (y) dS(y) ≈
n∑

j=1

[
G(x, yj )σj sj λ

G
j + GL(x, yj )σj

(
wL

j (x) − sj log
∣∣yj − x

∣∣ λG
j

)]
. (19)

3. Nearly singular case. If x is close to �, but not on a neighboring panel, then we
need to address both singularities in (5). This case occurs when either x ∈ � is
close to ∂�, or when x ∈ ∂� is on a section of the boundary that is distant in arc
length or disjoint. The layer potential is then evaluated as

∫
�

G(x, y)σ (y) dS(y) ≈
n∑

j=1

[
G(x, yj )σj sj λ

G
j

+GL(x, yj )σj

(
wL

j (x) − sj log
∣∣yj − x

∣∣ λG
j

)

+GC(x, yj )σj

⎛
⎝wC

j (x) − sj
(yj − x) · n̂(yj )∣∣yj − x

∣∣2 λG
j

⎞
⎠
]
. (20)

Given a target point x, the panels on ∂� are partitioned into two sets: far panels,
that can be evaluated directly using (14), and near panels, that must be evaluated (or
corrected), using either (18), (19), or (20).

3 Problem statement

The kernel-split quadrature scheme outlined above is both efficient and accurate
when applied to the single- and double-layer potentials of several PDEs, such as the
Laplace, Helmholtz, and Stokes equations [11, 13, 17] on geometries with a smooth
boundary. However, for the modified PDEs (1), (2), and (3), the scheme can fail
completely. All of these equations have layer potential kernels including second-kind
modified Bessel functions, of the forms K0(α|y − x|) and/or K1(α|y − x|). As we
shall see, this is problematic for the kernel-split quadrature.

As an illustrating example, we study the single-layer kernel of the modified
Helmholtz equation (1). The associated Green function is

G(x, y) = K0(α|y − x|), (21)

where the scaling factor 1/2π has been omitted. The split of this kernel is based on
using a standard decomposition [16, §10.31] to explicitly write out the singularities
in K0,

K0(ρ) = KS
0 (ρ) − I0(ρ) log ρ, ρ ∈ R

+, (22)
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where KS
0 is the smooth remainder, and I0 is the modified Bessel function of the first

kind. For future reference, we have by [16, §10.25,§10.29] that

Iν(ρ) =
(
1

2
ρ

)ν ∞∑
k=0

(
1
4ρ

2
)k

k!(ν + k)! , ν ∈ N, ρ ∈ R, (23)

and the derivatives of Iν can be expressed as

I (n)
ν (ρ) = 2−n

n∑
m=0

(
n

m

)
I2m+(ν−n)(ρ), ν, n ∈ N, ρ ∈ R, (24)

which makes them easy to evaluate using standard numerical libraries,
Inserting (22) into the kernel (21), after also splitting the logarithm, we identify

the terms in (5) as

GS(x, y) = KS
0 (α|y − x|)−I0(α|y − x|) logα, (25)

GL(x, y) = −I0(α|y − x|), (26)

GC(x, y) = 0. (27)

Product integration is a semi-analytical method. This means that the target-specific
quadrature weights in (15) are found by an analytic treatment of the singularity
or near singularity. The accuracy of the method for a given evaluation point x is
basically limited by how well a function f (x, y) can be resolved by an (n − 1)th-
degree Legendre polynomial. For a well-resolved function, the integration error is
usually only at most a few orders of magnitude larger than round-off, independent
of the location of the evaluation point. We now want to evaluate the layer potential
(4) with the layer density σ , using the split above. With this GL, f (x, y) in (15)
will be −I0(α|y − x|)σ (y). Hence, for good accuracy in integrating the logarithmic
singularity, it is this product that must have a small interpolation error.

The function G(x, y) goes to zero as |y − x| goes to infinity, since Kν(ρ) ∼√
π/(2ρ)e−ρ as ρ → ∞ for ν = 1, 2, but its components GS(x, y) and GL(x, y)

actually grow exponentially as eα|y−x|, with opposing signs, following the asymptotic
Iν(ρ) ∼ eρ/

√
2πρ as ρ → ∞ for ν = 1, 2 [16, §10.25,§10.30]. As α gets larger,

this makes GL an increasingly bad candidate for polynomial interpolation, which
will render the product integration inaccurate. In addition, when evaluated in limited
precision, this split is prone to numerical cancellation, due to the limiting forms of
K0 and I1. We will argue that the error mainly is a function of the quantity αh, which
can be heuristically motivated by Fig. 1. To ensure that this error remains below some
tolerance ε, we therefore suggest that α and panel length h must satisfy a criterion on
the form

αh ≤ Cε, (28)

for some constant Cε, which can be determined using numerical experiments. The
above criterion can also be reformulated as follows: In order to achieve a tolerance ε,
panel lengths must satisfy

h ≤ hmax := Cε/α. (29)
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Fig. 1 Relative error Erel = ‖u − ũ‖∞/‖u‖∞, where ũ is the result of evaluating the modified Helmholtz
single layer potential (30) over a flat panel of length h, using kernel-split quadrature with n = 32 Gauss–
Legendre points. The norm is taken over 100 values of target points x randomly drawn from the box
[−h/2, h/2] × [0, h/2]. The white lines are contours of the quantity αh, providing a heuristic motivation
for why a criterion of the form (28) is suitable

The naive way of achieving this, for a given α, is to discretize ∂� using sufficiently
short panels. However, this can result in a discretization with orders of magnitude
more points than necessary to resolve the geometry and the layer density. Global
refinement is also redundant for another reason: as stated above the functions K0(ρ)

and K1(ρ) decay as
√

π/(2ρ)e−ρ , meaning that they are very localized for large α,
i.e., when polynomial interpolation might fail, and are almost zero in finite precision
away from ρ = 0. Thus, only a small portion of the boundary needs refinement.

4 Error estimates

As was indicated above, there are two main sources of errors in the kernel split
quadrature that grow as α increases. The first part arises from an interpolation
error, and the second is due to numerical cancellation. In order to better understand
these errors, we will perform a limited analysis for the single-layer potential of the
modified Helmholtz equation on a flat panel in Section 4.1.

This understanding of the error structure is useful also for the associated kernels
for the other modified PDEs since they have a similar singularity structure to the
single-layer modified Helmholtz potential; see Appendix 2. They are all combina-
tions of K0 and/or K1; thus, in the form of explicit singularities, they contain I0
and/or I1 multiplying a log-type singularity.

Based on our simple analysis in Section 4.1, we will in Section 4.2 formu-
late an error estimate and illustrate its performance for the single-layer modified
Helmholtz potential. The error estimates can be used to set Cε in (28), as discussed
in Section 4.4. Other kernels are discussed in Section 4.3.

In this section as well as the next, we will identify vectors x, y ∈ R
2 with the

corresponding complex numbers x, y ∈ C.
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4.1 Error analysis for a flat panel

We consider the single-layer potential for the modified Helmholtz equation with unit
density, evaluated using kernel-split quadrature from a flat panel of length h,

u(x) =
∫ h/2

−h/2
K0(x, y) dy. (30)

To evaluate (30) using the kernel-split correction (20), we first write

u(x) ≈
n∑

j=1

(
G(x, yj ) − GL(x, yj ) log

∣∣yj − x
∣∣)λj −

∫ h/2

−h/2
I0(α|y − x|) log |y − x| dy, (31)

using GC(x, y) = 0 (27). In order to evaluate the remaining integral, the func-
tion I0(α|y − x|) is approximated by an (n − 1)th-degree polynomial pn−1 that
interpolates I0(α|y − x|) at the n nodes yj ,

I0(α|y − x|) = pn−1(x, y) + rn(x, y), (32)

pn−1(x, y) =
n−1∑
k=0

ck(x)yk, (33)

pn−1(x, yj ) = I0(α|yj − x|), j = 1, . . . , n, (34)

where rn is the polynomial interpolation error. We consider only even values for n.
The integral on the right-hand side of (31) can be written as a sum: the approximation
by integrating the polynomial pn−1, and an integral over the polynomial interpolation
error

∫ h/2

−h/2
I0(α|y − x|) log |y − x| dy = Re

(∫ h/2

−h/2
I0(α|y − x|) log(y − x) dy

)
(35)

= Re

⎛
⎝n−1∑

k=0

ck(x)qk(x)

⎞
⎠ + Re

(∫ h/2

−h/2
rn(x, y) log(y − x) dy

)
.(36)

Here, we have used the definition of the complex logarithm. We have that

qk(x) =
∫ h/2

−h/2
yk log(y − x) dy, k = 0, . . . , n − 1, (37)

are integrals that can be computed recursively, starting from exact formulas [10].
The error in the kernel-split quadrature has two sources. The first is the integral

over the interpolation error from the integral in the right-hand side of (31), namely

Rn(α, x, h)=
∫ h/2

−h/2
rn(x, y) log |y−x| dy =Re

(∫ h/2

−h/2
rn(x, y) log(y−x) dy

)
.(38)

For brevity, we also refer to the integral over the interpolation error as the interpola-
tion error. It will be clear from context which one that is referred to.
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The second is a cancellation error due to the limiting forms of G and GL. Recall
that GS = G − GL; this function grows exponentially as −eα|y−x|/

√
2πα|y − x|,

which is the same asymptotics as for GL, but with opposite sign. The function G is
a decaying function as α|y − x| goes to infinity; thus, GS and GL have to cancel.
As the quadrature terms in (31) grow in magnitude, catastrophic cancellation errors
follow.

We will now perform the analysis of the interpolation error for target points x

along the real axis. In Section 4.2, we will consider the performance of this estimate
for target points in the plane.

4.1.1 Interpolation error

Our goal is to estimate the magnitude of the interpolation error Rn(α, x, h) in (38),
and we will do so for x ∈ R. The polynomial pn−1 (33) is formed by interpolating at
the Legendre nodes, yj = tGj h/2. According to [18], the remainder is given by

rn(x, y) =
n∏

j=1

(y − tGj h/2)
1

n!
dn

dξn
I0
(
α(ξ − x)

)
, y, ξ ∈ [−h/2, h/2], (39)

where the absolute value of the argument of I0 can be removed, since I0 is an even
function. This is convenient, as it simplifies differentiation.

The n Legendre nodes are the roots of the Legendre polynomial of order n, denoted
Pn, orthogonal on [−h/2, h/2]. Hence

�n

n∏
j=1

(y − tGj h/2) = Pn(2y/h), y ∈ [−h/2, h/2], (40)

where �n is the coefficient of the leading order monomial term in Pn. From
Rodrigues’ formula [16, §18.5], it can be shown that �n = 2−n(2n)!/(n!)2. After
rescaling ξ , we have

rn(x, y) = Pn(2y/h)
(αh)nn!
(2n)! I

(n)
0

(
α(ξh/2 − x)

)
ξ ∈ [−1, 1]. (41)

To present an error bound for (41), we can apply

0 ≤ I
(n)
0

(
α(ξh/2 − x)

) ≤ I
(n)
0

(
α(h/2 + |x|)), ∀ξ ∈ [−1, 1]. (42)

However, the resulting error bound greatly overestimates the error, and thus is not of
practical use. We pursue an alternative approach by estimating rn by choosing a value
for ξ for all pairs (x, y). For this purpose, heuristics suggest ξ = 0, as demonstrated
below.

Combining (38) and (41) for ξ = 0, we get the estimate
∣∣Rn(α, x, h)

∣∣ ≈
∣∣∣Re (�S(α, n, x, h)

)∣∣∣ ≤ ∣∣�S(α, n, x, h)
∣∣ , (43)

with �S defined as

�S(α, n, x, h) = n!
(2n)! (αh)nI

(n)
0

(
α|x|) h

2gn

(
2x/h

)
, (44)
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where the subscript S denotes single-layer potential. Note that I (n)
0 is an even function

for even values of n; by the relation (24) I
(n)
0 is a linear combination of Iν with even

ν, and it follows from the definition (23) that these terms are even. Thus, we may
take the absolute value of the argument of I

(n)
0 without altering the result. This is

important, as later on we will consider complex target points x.
In (44), we have

gn(x̃) =
∫ 1

−1
Pn(ρ) log(ρ − x̃) dρ (45)

obtained by
∫ 1

−1
Pn(ρ) log(ρh/2 − x) dρ =

∫ 1

−1
Pn(ρ) log(ρ − 2x/h) dρ = gn(2x/h), (46)

where the integral is rewritten using log(h/2(ρ−2x/h)) = log(h/2)+log(ρ−2x/h)

and the fact that each Pn(ρ) integrates to zero over the interval.
This “Legendre-log integral” can be evaluated using the recursion formulas in

Appendix 1.
For h = 2, both the absolute value as well as the real part of �S in (44) are

shown as a function of x in Fig. 2. The absolute value of �S is a smooth function
that achieves its maximum for x close to the endpoints of the interval. This is due to
the log-factor in the integrand being singular for target points x in [−1, 1], combined
with the growth of the factor I0 towards the edges of the panel. For target points x

outside the source panel, the Legendre-log integral gn decreases rapidly.
This plot is only illustrating the error estimate derived for this simplified case.

How well it actually estimates the error will be discussed after we have considered
also the second part of the error.

4.1.2 Numerical cancellation error

In addition to the interpolation error just discussed, the kernel-split (31) can
also suffer from numerical cancellation when α is large. To see this, note
that G(x, y) − GL(x, y)log(α

∣∣y − x
∣∣) = GS(x, y), which has the asymptotics

−eα|y−x|/
√
2πα

∣∣y − x
∣∣ as α

∣∣y − x
∣∣ goes to infinity. This is the same asymptotics as

Fig. 2 Plot of the error estimate (43) with (n, α) valued (16, 3) and (32, 10), and h = 2. The estimate
|Re�S | oscillates in x, and is enveloped by the smooth upper bound |�S |, which has a maximum to the
left of x = 1
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for I0, but with an opposing sign. These two terms have to cancel, since K0, i.e., G,
is a decaying function. The sum of terms with a large magnitude, but opposing signs,
is prone to numerical cancellation in limited precision.

The cancellation error is straightforward to estimate by

�S(α, x, h) = εmachhI0(αd), d = max
y∈[−h/2,h/2]

|y − x| = h/2 + |x|, (47)

where εmach is the machine epsilon.

4.2 Error estimate

We now have an error estimate |�S(α, n, x, h)| (44) for the interpolation error
Rn(α, x, h) (38), and an estimate �S(α, x, h) (47) for the cancellation error. Both
were derived for target points along the real axis, but we now evaluate the estimated
maximum error over a set D of discrete target points in the plane, and compare it
to the maximum measured actual error. There are two goals: to study the errors’
and error estimates’ dependence on αh, and to construct a combination of the error
estimates to predict the total error.

Let D be the set 100 sampled complex points with positive imaginary part uni-
formly within a Bernstein ellipse with foci ±1, and denote its elements as x̃. The
radius for the Bernstein ellipse is set to be equal to 316/n, as points farther away from
the panel do not need the kernel-split quadrature scheme to be accurate [4]. This set
is visualized in Fig. 3. By setting x̃ = 2x/h, the estimate (44) can be rewritten as

�S(α, n, x̃, h) = n!
(2n)! (αh)nI

(n)
0

(
αh

2
|x̃|

)
h

2
gn(x̃), (48)

and similarly the cancellation error (47) becomes

�S(α, x̃, h) = εmachhI0

(
αh

2
d

)
, d = 1 + |x̃|. (49)

Fig. 3 Left: Distribution of 100 target points in the upper half of the Bernstein ellipse with foci at ±1,
forming the set D, and a flat panel. Right: Plot of measured actual total errors scaled with 1/h for different
h, error bound, and error estimates �S,max/h and �S,max/h for the target points in the left plot for the
single-layer kernel for the modified Helmholtz Eq. (21), with n = 16 over a range of αh
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We define

�S,max = max
x̃∈D

|�S(α, n, x̃, h)|, (50)

�S,max = max
x̃∈D

�S(α, x̃, h). (51)

The maximum of these two quantities gives the error estimate

ES(α, n, h) = max
(
�S,max, �S,max

)
, (52)

for given values of α, n, and h. From (48) and (49), it is clear that ES is a function
with αh and h as two separate arguments, motivating the formulation

ES(α, n, h) = hẼS(αh, n). (53)

Hence, we expect the error divided by h to be a function of αh only, and this is
confirmed in Figs. 3 and 4. Here, we plot the error scaled with 1/h for different
values of h versus αh, for different values of n. We see that the error curves collapse
for different values of h, just as predicted. Furthermore, from the plots, it is clear that
the interpolation error and cancellation error dominate in different regimes. As n is
increased, the interpolation error decreases, and the cancellation error will continue
to be dominant for larger values of αh. Considering the left plot of Fig. 4, we can most
clearly see how the measured error follows the cancellation error estimate �S,max
first, and then shifts to follow the interpolation error estimate �S,max as it becomes
dominant. We can conclude that the error estimate ẼS predicts the actual error, scaled
with 1/h, quite well.

4.3 Other kernels

We now discuss error estimates for the other kernels of interest for the modified
PDEs. The double-layer kernel for modified Helmholtz is discussed in detail, which

Fig. 4 Plots of measured actual total errors scaled with 1/h for different h, and error estimates �S,max/h

and �S,max/h for the target points in Fig. 3 for the single-layer kernel for the modified Helmholtz Eq. 21,
with n = 24 (left) and 32 (right), over a range of αh
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is used to motivate a similar treatment of the error estimates for the modified bihar-
monic equation and the modified Stokes equations. Their corresponding kernels, and
the decompositions thereof into explicit singularities, are shown in Appendix 2.

The kernels for layer potentials associated with the modified Helmholtz equation
(double layer), modified biharmonic, and modified Stokes are harder to study ana-
lytically than the single-layer kernel for the modified Helmholtz equation; GL for all
of them contain I0 and/or I1 multiplying a smooth function, which we collectively
denote F . This means that the interpolation error (39) includes the nth derivative of
a product. However, we observe that the derived error estimates of the interpolation
error for the single-layer kernel can be applied to the these kernels as well, with a
few modifications. This is not surprising, as the difficulties lie in properly resolv-
ing I0 and/or I1, not resolving the function F . The cancellation error (51) is also
straightforward to modify.

Before proceeding with the error estimates, we present the split of the double-layer
kernel for the modified Helmholtz equation into explicit singularities. The associated
kernel is, again omitting the scaling 1/2π ,

G(x, y) = ∂

∂n̂(x)
K0(α|y − x|) = −αK1(α|y − x|) (y − x) · n̂(y)

|y − x| , (54)

and by [16, §10.31] one has

K1(ρ) = KS
1 (ρ) + 1

ρ
+ I1(ρ) log ρ, ρ ∈ R+. (55)

The contents of the functions G0, GL, and GC depend on the location of the target
point x. If x belongs to the boundary, i.e., x ∈ ∂�, then the kernel-split is

GS(x, y) = −α

(
KS

1 (α|y − x|) + 1

α|y − x| + I0(α|y − x|) logα

)
(y − x) · n̂(y)

|y − x| , (56)

GL(x, y) = −αI1(α|y − x|) (y − x) · n̂(y)

|y − x| , (57)

GC(x, y) = 0. (58)

For off-boundary x, the kernel-split is

GS(x, y) = −α
(
KS

1 (α|y − x|) + I1(α|y − x|) logα
) (y − x) · n̂(y)

|y − x| , (59)

GL(x, y) = −αI1(α|y − x|) (y − x) · n̂(y)

|y − x| , (60)

GC(x, y) = −1. (61)

The main difference between the two decompositions is that 1/|y − x| in (55) goes
into GS for x ∈ ∂�, due to the known limit value (17), while for x /∈ ∂� it results
in a non-zero GC . For both kernel splits, the function GL is smooth and consists of
the modified Bessel function I1 multiplied with F = (y − x) · n̂(y)/|y − x|. Here, F
does not pose the difficulties with polynomial interpolation as I1 does.
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We now create an error estimate for the interpolation error. Again identifying the
vectors x and y in R

2 with complex numbers x and y in C, and following the same
steps as for the single-layer potential, we get analogous to (41)

rn(x, y) = Pn(2y/h)
(αh)nn!
(2n)!

dn

dξn

(
αI1

(
α|ξh/2 − x|)

(
ξh/2 − x

) · n̂(ξh/2)

|ξh/2 − x|

)
(62)

= Pn(2y/h)
(αh)nn!
(2n)!

dn

dξn

(
sgn

(
ξh/2−x

)
αI1

(
α
(
ξh/2−x

)) (
ξh/2−x

) · n̂(ξh/2)

|ξh/2−x|

)
, ξ ∈[−1, 1], (63)

since I1 is an odd function. The derivation for the single-layer kernel that we based
this result on was done for x in R. We will now, as before, apply it to target points
x in C, for which

(
ξh/2 − x

) · n̂(ξh/2) is non-zero. To avoid the nth derivative of
the product, we make the following argument. We exclude the value x = ξh/2 since
then rn is equal to zero. Away from zero, the derivative of the sgn function is zero.
Furthermore, it is I1 that is difficult to represent accurately with polynomials and
it contributes considerably more to the error than F does; thus, we keep only the
dominant term obtained by the chain rule and write

rn(x, y) ≈ Pn(2y/h)
(αh)nn!
(2n)! sgn

(
ξh/2 − x

)
αI

(n)
1

(
α(ξh/2 − x)

) (ξh/2 − x
) · n̂(ξh/2)

|ξh/2 − x| , ξ ∈ [−1, 1]. (64)

As for the single layer we set ξ to zero, which results in the estimate

�D(α, n, x̃, h) = n!
(2n)! (αh)n+1I

(n)
1

(
αh
2 |x̃|

)−Im(x̃)
|x̃|

1
2gn(x̃), (65)

where gn(x̃) is given by (45) and x̃ = 2x/h as before. Again we have reinserted the
absolute value in the argument of the modified Bessel function, by removing the sgn
function, since by (23) and (24) I

(n)
1 is an odd function for even n.

For the cancellation error, similarly

�D(α, x̃, h) = εmachαhI1

(
αh

2
d

)
Im(x̃)

|x̃| , d = 1 + |x̃|, (66)

where (y − x) · n̂(y)/|y − x| has been replaced with Im(x̃)/|x̃|.
Clearly, the error estimates depend purely on αh, without any multiplying h-

factor, in difference to the single-layer kernel. For the double-layer potential, the
error estimate is

ED(α, n, h) = ẼD(αh, n) = max
(
�D,max, �D,max

)
, (67)

where �D,max and �D,max are defined analogous to (50) and (51) for (65) and (66).
The predicted pure dependence on αh for the measured numerical error can be seen
in Fig. 5. The estimate for the cancellation error is not as tight as for the single-layer
kernel for n = 32. Still, at its worst, the estimates are off by a digit of the actual error.
Also, we see that it is possible to ignore the chain rule and only differentiate I1, but
not F , and obtain good estimates.

To derive error estimates for the kernels associated with the other modified PDEs,
a similar approach as above can be taken. The error estimate E will have the form

E(α, n, h) = H(h)Ẽ(αh, n), (68)
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Fig. 5 Plots of measured actual total errors for different h, and error estimates �D,max and �D,max for
the target points in Fig. 3 for the double-layer kernel for the modified Helmholtz (54), with n = 16 (top),
n = 24 (left), and 32 (right), over a range of αh

where simply H(h) = hp for some p.
The discussion that we have put forward has given an understanding of the two

sources of errors. Practically, only a value for Cε needs to be determined; it sets
panel lengths in the subdivision algorithm, introduced in the next section. Instead of
deriving an error estimate, one can simply use figures such as Figs. 3, 4, and 5 for
the measured numerical errors for this purpose. Here, one needs to find the proper
scaling H(h) by which to scale the errors before plotting, such that they coincide for
different h. In Fig. 6, such results are presented for the double-layer kernel for the
modified Stokes (106), with p = 1. The error curves do not collapse as neatly as for
the modified Helmholtz equation, indicating that there is a scaling factor other than
h. Still, the results can be used to set Cε, as demonstrated in Section 6.

4.4 Condition for αh

As was shown above, the error when evaluating the double layer modified Helmholtz
kernel with an n point Gauss–Legendre quadrature rule over one panel with length h

only depends on n and αh. That means that given the error tolerance ε, Cε = αh that
yield this error can be read off from a plot such as in Fig. 5 for the given n. Fixing
that Cε, the condition (as written in (28)) is αh ≤ Cε.
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Fig. 6 Plot of measured actual total errors for different h, for the target points in Fig. 3 for the double-layer
kernel for the modified Stokes (106), with n = 16, over a range of αh

For other kernels, such as the single-layer modified Helmholtz kernel, there is not
a pure αh dependence on the error, as we have seen. However, to keep the procedure
simple, we would suggest the following approach. Pick a typical value of the panel
length h for the discretization at hand. Then, divide the given tolerance ε by this h,
and use this scaled tolerance when determining Cε from plots of the scaled error for
the appropriate n, such as in Figs. 3 and 4.

In the subdivision algorithm, the reduction in error through this extra factor of h of
refinement will then not be taken into account, and hence the panels might be refined
to be somewhat smaller than needed. But this will allow us to keep the same simple
structure of the subdivision algorithm for all different kernels.

5 Quadrature by recursive subdivision

To circumvent the problem of interpolatory quadrature failing for large α, we here
introduce an algorithm for local refinement, based on panel subdivision. Given a
single-source panel �, we assume that it is sufficiently short, relative to the quadra-
ture order n, for both the geometry and the layer density to be well represented by a
polynomial, interpolated at the n quadrature points. We say that it is well resolved.
For a given target point x, we can then subdivide � into a set of M subpanels {�i}Mi=1,
interpolate our known quantities from the quadrature nodes on � to the quadrature
nodes on those subpanels, and then evaluate the layer potential at x using the sub-
panels. To ensure accuracy for a given tolerance, this subdivision is formed in a way
that guarantees that all subpanels either are short enough to satisfy (28), obtained via
(52) or similarly, or are sufficiently far away from x, relative to their own length, to
not need kernel-split quadrature.

Before we can state our algorithm, a number of preliminaries are needed.
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Preimage of target Let γ (t) : R → C be the mapping from the standard interval
[−1, 1] to the panel �. Then z, such that γ (z) = x, is the preimage of the target point
x. The preimage z is real-valued if x ∈ ∂�, and complex-valued otherwise. We here
assume that we know the value of z, but γ (t) need not be a known function; see [2]
for a discussion on how to construct a numerical representation.

Subpanels and subintervals A subdivision of � is defined by a set of edges in the
parametrization, {−1 = t1, t2, . . . , tM+1 = 1}, such that a subpanel �i is given by
the mapping of the subinterval [ti , ti+1] under γ . We can, by a linear scaling, define
the local mapping that maps the standard interval [−1, 1] to �i as

γi(t) = γ

(
ti + �ti

2
(t + 1)

)
, (69)

where�ti = ti+1−ti . Given the preimage z, the local preimage zi , such that γi(zi) =
x, is given by

zi = 2

�ti
(z − ti ) − 1. (70)

Near evaluation criterion Given the preimage z of a point x close to a panel (or sub-
panel) �, it is possible to compute an accurate estimate of the quadrature error when
evaluating the layer potential using n-point Gauss–Legendre quadrature. Detailed
discussions can be found in [1, 2]. To leading order, the error is proportional ρ(z)−2n,
where ρ is the elliptical radius of the Bernstein ellipse on which z lies,

ρ(z) =
∣∣∣z +

√
z2 − 1

∣∣∣ , (71)

where
√

z2 − 1 is defined as
√

z + 1
√

z − 1 with −π < arg (z ± 1) ≤ π . For a given
kernel G and error tolerance ε, it is then possible to introduce a cutoff radius Rε, such
that kernel-split quadrature must be used for

ρ(z) < Rε, (72)

and otherwise Gauss–Legendre quadrature is sufficiently accurate. We refer to this
as the target point and the source points being well-separated; otherwise, they are
considered to be close. See [2] on how to set Rε for a given tolerance; we use Rε =
3.5 for n = 16, which corresponds to a tolerance of 10−14.

Later, we will use that the inverse of ρ has a particularly simple form in the special
case when z lies on the imaginary axis,

z = ±ib, b > 0,

ρ(z) = b +
√

b2 + 1,

z(ρ) = ± i(ρ2 − 1)

2ρ
. (73)

Interpolation and upsampling To interpolate data from the n original Gauss–
Legendre nodes on [−1, 1], to m new Gauss–Legendre nodes on a subinterval
[ti , ti+1] ⊂ [−1, 1], we use barycentric Lagrange interpolation [5]. By upsampling,
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we refer to the special case of interpolating from n to 2n Gauss–Legedre nodes, both
on [−1, 1].

Subinterval length criterion When a new subpanel �i is formed on �, we need to
check if it satisfies the kernel-split accuracy criterion (28), which requires knowledge
of the arc length of the subpanel, denoted hi . Assuming that γ ′(t) does not vary
rapidly on �, a good approximation to hi is hi ≈ h�ti/2, where h is the arc length
of �. We can now combine this approximation with (28), to get an accuracy criterion
formulated in subinterval size,

�ti ≤ 2Cε

αh
. (74)

In particular, this allows us to write down the maximum length of subintervals on
which product integration can be used,

�tmax = 2Cε

αh
. (75)

Here, Cε can be obtained via (52), as a precomputation step.

5.1 Algorithm

Our algorithm proceeds with creating a division of [−1, 1] into subintervals, which
corresponds to a division of � into subpanels.

For a target point x with preimage z such that Re z ∈ (−1, 1), the first step is to
create a subinterval centered on Re z, with length set to satisfy both of the conditions
(72) and (75). The centering ensures that the subpanels will not introduce new edges
or quadrature nodes that are close enough to z to degrade precision.

If this initial subinterval has length �tc, then the preimage of x in that local frame
will be zc = ibc, with bc = 2 Im z/�tc and (73) is applicable.

If we wish the local preimage zc to be just beyond the limit where kernel-split
quadrature is needed, then we must set �tc such that ρ(zc) = Rε. From (73), we can
derive that this is satisfied when �tc = �tdirect,

�tdirect = | Im z| 4Rε

Rε
2 − 1

. (76)

For the subinterval to be contained within [−1, 1], it may not be bigger than twice
the distance between Re z and the closest interval edge,

�tedge = 2(1 − |Re z|). (77)

Now we set the initial subpanel as large as possible, while still ensuring that the
quadrature from it is accurate, and that it falls within [−1, 1],

�tc = min
(
�tedge,max (�tdirect, �tmax)

)
. (78)

Here, �tdirect depends on the location of the target point, while �tmax does not. Thus,
for points sufficiently far away �tmax might be larger than �tdirect.

By (78), we have the initial subdivision {−1,Re z − �tc/2,Re z + �tc/2, 1}. The
center subinterval is now acceptable, and we proceed by recursively bisecting each

Adv Comput Math (2022) 48: 1212   Page 18 of 27



remaining subinterval until either its length satisfies (74), or the local preimage of x

satisfies (72).
For target points such that Re z /∈ (−1, 1), we can skip the process of carefully

selecting the length of the nearest subinterval, and proceed immediately with recur-
sive bisection of {−1, 1}. This completes the algorithm, which we list in its entirety
in Algorithm 1.

Algorithm 1 Given a panel of length h and a nearby target point with preimage
z, create a subdivision of [−1, 1] that allows the layer potential to be accurately
evaluated, using either direct Gauss–Legendre quadrature or kernel-split quadrature.

function CREATE SUBDIVISION(z, h, α, Cε, Rε)
�tmax ← 2Cε/(αh)

if|Re z| ≥ 1 then � Preimage outside interval, recursively bisect all of it.
return RECURSIVE BISECTION(−1, 1, Rε, �tmax, z).

else
�tdirect ← 4| Im z|Rε/(Rε

2 − 1)
�tedge = 2(1 − |Re z|)
�tc ← min

(
�tedge,max (�tdirect, �tmax)

)
ta ← Re z − �tc/2
tb ← Re z + �tc/2

� Center interval is now acceptable, recursively bisect remainder
subintervals.

S1 ← RECURSIVE BISECTION(−1, ta, Rε, �tmax, z)
S2 ← {ta, tb}
S3 ← RECURSIVE BISECTION(tb, 1, Rε, �tmax, z)
return S1 ∪ S2 ∪ S3

end if
end function

function RECURSIVE BISECTION(t1, t2, Rε, �tmax, z)
if t1 < t2 then

�tsub ← t2 − t1
zsub ← 2(z − t1)/�tsub − 1 � From (70).
if ρ(zsub) < Rε and �tsub > �tmax then � Using (71).

� Kernel-split must be used, but interval still too large. Continue
bisection.

tmid ← t1 + �tsub/2
S1 ← RECURSIVE BISECTION(t1, tmid, Rε, �tmax, z)
S2 ← RECURSIVE BISECTION(tmid, t2, Rε, �tmax, z)
return S1 ∪ S2

end if
end if
return {t1, t2} � Subinterval passed.

end function

Adv Comput Math (2022) 48: 12 Page 19 of 27    12



6 Numerical results

To test the robustness of our method across a range of α values, we solve the modified
Helmholtz equation and the modified Stokes equations. Based on the discussion in
Section 4, the parameter Cε is set to confirm that prescribed error tolerances are
satisfied.

6.1 Themodified Helmholtz equation

We solve the modified Helmholtz (1) inside the annulus centered at the origin,
defined by a circle of radius 0.3, and a circle of radius 0.6, with Dirichlet boundary
conditions given by a fundamental solution (21) centered in the inner circle,

(� − α2)u = 0, x ∈ �, (79)

u = K0(α|x − x0|), x ∈ ∂�, (80)

x0 = (0.01, 0.01)T . (81)

The exact solution to this problem is equal to the expression for the Dirichlet bound-
ary condition, evaluated in �. See Fig. 7 for a visualization of (80) for α = 10, 100.
We see that K0(α|x − x0|) decays rapidly for α = 100.

To solve the above problem numerically, we represent the solution using the
double-layer potential

u(x) =
∫

∂�

G(x, y)σ (y) dS(y), (82)

where G is the double-layer kernel (54).

Fig. 7 Plots of K0(α‖x − x0‖), the modified Bessel function of the second kind of zeroth order, for
α = 10, 100 and x0 = (0.01, 0.01)T . The black circles of radius 0.3 and 0.6 define the annulus that is
computational domain
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Enforcing the boundary condition (80) gives a second kind integral equation in σ ,

σ(x) +
∫

∂�

G(x, y)σ (y) dS(y) = K0(α|x − x0|), x ∈ ∂�. (83)

We solve this using the Nyström method, discretizing the boundary using 16-point
Gauss–Legendre panels, with 15 panels on the inner circle, and 30 panels on the
outer. For the bound (76), we use use Rε = 3.5, and for (74) we set Cε = 3.7 by
reading off Fig. 5 to achieve a tolerance of 10−14. Following the notation of (5), the
kernel-split of (54) is given by (56) – (61).

For a large range of α values, we solve the integral equation, and then evaluate
the solution at 15 random points on a circle of radius 0.301 (very close to the inner
boundary). Quadrature by recursive bisection is applied both when solving for the
density (83) and for evaluating the solution (82).

The results, shown in Fig. 8, demonstrate that our subdivision algorithm is capable
of avoiding the catastrophic loss of accuracy otherwise present above a threshold
α, and that the additional cost incurred from it is proportional to logα. We do not
satisfy the error tolerance of 10−14; around one digit of accuracy appears to be lost,
presumably due to the additional interpolation steps involved.

We also try other values for Cε to confirm that we stay under a given tolerance.
Based on Fig. 5, we haveCε = 18.7, 12.8, 8.2 for the tolerances 10−2, 10−6, 10−10.
The largest corresponding relative errors for each tolerance, taken over the plotted
range of values of α, are 3.7 · 10−5, 6.7 · 10−8, 1.8 · 10−11. Clearly the errors are at
least one digit below the prescribed tolerance. It is not surprising that the set value for
Cε gives a lower error than Fig. 5 suggests. In the subdivision algorithm introduced
in this paper, the first panel in the recursive scheme always has as its center the
projection of the target point on the boundary. Therefore, target points are never close
to panel edges, where errors from the kernel-split quadrature tend to be greater than
for target points towards the panel’s center [13].

Fig. 8 Comparison of the original kernel-split algorithm, denoted “Original,” and our adaptive algorithm,
denoted “Tol= tolerance subdivision” for given tolerances, when solving our test problem for the modified
Helmholtz equation for a large range of α. We test the solution up to α ≈ 2000; for larger values of α, the
solution is about round-off in the entire domain
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Fig. 9 Comparison of the original kernel-split algorithm, denoted “Original,” and our adaptive algorithm,
denoted “Tol = tolerance subdivision” for given tolerances, when solving our test problem for the modified
Stokes equations for a large range of α

6.2 Themodified Stokes equations

We solve the modified Stokes (3) in a setting analogous to (80); the geometry, and
the discretization thereof, is the same, and the boundary data and the solution is given
by the associated fundamental solution (106). As opposed to the modified Helmholtz
equation, no error estimates are presented in this paper for the modified Stokes equa-
tion, which can be used to set Cε. Instead, one can use the measured numerical errors
for a flat panel for different values of h, each scaled with 1/hp, as suggested in
Section 4.3. Here, p is chosen such that the error curves collapse. For the modified
Stokes in a double-layer formulation, such results are shown in Fig. 6, with p = 1.

Following the methodology presented in Section 4.4, we set Cε to achieve
certain tolerances. For the tolerances 10−2, 10−6, 10−10, 10−14, we set Cε =
16.7, 11.5, 7.4, 4.4 based on Fig. 6. The corresponding maximum errors over all
alpha are 3.8 · 10−5, 4.8 · 10−8, 1.1 · 10−11, 5.3 · 10−14, shown in Fig. 9. The mag-
nitudes of the errors, for a given tolerance, are consistent with the results for the
modified Helmholtz equation, presented in the previous section. The errors are well
below the prescribed tolerance, meaning more subdivisions are applied than neces-
sary. The hypothesis is the same as for the modified Helmholtz; for the subdivision
algorithm the target point, or the projection thereof, on the boundary is always cen-
tered on the new panel. Thus, it is never close to the panel edges, where the error
tends to be greater.

7 Conclusions

We present a robust recursive algorithm that allows the method of Helsing et al.
to be applied, for any α, to the modified Helmholtz equation, modified biharmonic
equation, and modified Stokes equations on smooth geometries. Before, this was
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not possible for large α, which corresponds to small time-steps with semi-implicit
marching schemes for the heat equation and the time-dependent Stokes and Navier-
Stokes equations. Our algorithm is fully adaptive, and the additional computational
time it requires scales as logα. Our choice of the parameters Cε and Rε is based on
numerical observations and provide excellent results.

Appendix 1: Formulas for recursive computation of the Legendre-log
integrals

1.1 Result

The integrals

gn(x) =
∫ 1

−1
Pn(ρ) log(ρ − x)dρ, n = 0, 1, 2, . . . , (84)

can be computed recursively using the formulas

g0(x) = (1 − x) log(1 − x) + (1 + x) log(−1 − x) − 2,

g1(x) = 1

2

((
1 − x2

)
log(1 − x) −

(
1 − x2

)
log(−x − 1) − 2x

)
,

g2(x) = 1

3

(
3xg1 + 2

)
,

...

gn+1(x) = 1

n + 2

(
(2n + 1)xgn(x) − (n − 1)gn−1(x)

)
, n ≥ 2. (85)

The first two formulas, for g0(x) and g1(x), have finite limits as x → ±1.

1.2 Proof

The formulas for g0 and g1 follow from direct integration of (84), with P0(ρ) = 1
and P1(ρ) = ρ. For n > 1, the following two results are useful:

(n + 1)Pn+1(ρ) = (2n + 1)ρPn(ρ) − nPn−1(ρ), (86)

(2n + 1)Pn(ρ) = d

dρ

(
Pn+1(ρ) − Pn−1(ρ)

)
. (87)

Insertion of the recursion formula (86) into (84) gives

(n + 1)gn+1(x) = (2n + 1)
∫ 1

−1
ρPn(ρ) log(ρ − x)dρ − n

∫ 1

−1
Pn−1(ρ) log(ρ − x)dρ (88)

= (2n + 1)
∫ 1

−1
Pn(ρ)(ρ − x + x) log(ρ − x)dρ − ngn−1(x) (89)

= (2n + 1)
∫ 1

−1
Pn(ρ)(ρ − x) log(ρ − x)dρ + (2n + 1)xgn(x) − ngn−1(x). (90)
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Integration by parts of remaining integral, using (87) and ((ρ − x) log(ρ − x))′ =
1 + log(ρ − x),

(2n + 1)
∫ 1

−1
Pn(ρ)(ρ − x) log(ρ − x)dρ = (91)

=
[(

Pn+1(ρ) − Pn−1(ρ)
)
log(ρ − x)

]1
−1︸ ︷︷ ︸

I1

−
∫ 1

−1

(
Pn+1(ρ) − Pn−1(ρ)

)(
1 + log(ρ − x)

)
dρ

︸ ︷︷ ︸
I2

. (92)

We have Pn(1) = 1 and Pn(−1) = (−1)n, so it follows that I1 = 0. Furthermore,

∫ 1

−1
Pn(ρ)dρ = 2δ0n =

{
2, if n = 0

0, if n ≥ 1.
(93)

Consequently, since n ≥ 0,

I2 = −2δ0(n−1) + gn+1(x) − gn−1(x), (94)

⇒ (n + 1)gn+1(x) = 2δ0(n−1) − gn+1(x) + gn−1(x) + (2n + 1)xgn(x) − ngn−1(x), (95)

⇒ (n + 2)gn+1(x) = (2n + 1)xgn(x) − (n − 1)gn−1(x) + 2δ0(n−1), (96)

which leads to the recursion formulas (85).

Appendix 2: Kernel splits

Here, we complement the kernel split for the modified Helmholtz equation with
kernel splits for the modified biharmonic equation and the modified Stokes equations.

2.1 Modified biharmonic equation

The single-layer kernel for the modified biharmonic equation is

G(x, y) = −1

2πα2
(log |y − x| + K0(α|y − x|)). (97)

Inserting (22) the explicit split becomes

GS = −1

2πα2
(KS

0 (α|y − x|) + I0(α|y − x|) logα), (98)

GL = −1

2πα2
(1 + I0(α|y − x|)), (99)

GC = 0. (100)
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Here, GL contains the modified Bessel function I0, like the single-layer kernel for
the modified Helmholtz equation. The double-layer kernel is

G(x, y) = ∂

∂n̂(y)

−1
2πα2

(log |y−x|+K0(α|y−x|))= −1

2πα2

(
1

|y−x| +αK1(α|y−x|)
)

(y−x) · n̂(y)

|y−x| (101)

= −1

2πα2

(
1

|y−x| +αKS
1 (α|y−x|)+ 1

|y−x| +αI1(α|y−x|) log(α|y−x|)
)

(y − x) · n̂(y)

|y − x| (102)

by (55). The resulting decomposition is

GS = −1

2πα
(KS

1 (α|y − x|) + I1(α|y − x|) logα)
(y − x) · n̂(y)

|y − x| , (103)

GL = −1

2πα
I1(α|y − x|) (y − x) · n̂(y)

|y − x| , (104)

GC = −1

πα2
. (105)

2.2 Themodified Stokes equations

We present only the double-layer kernel for the modified Stokes equations, also
known as the stresslet. In the Einstein summation convention, it has the closed-form

Gijk = α2G1(α‖r‖)(δjkri + δikrj + δij rk) + α4G2(α‖r‖)rirj rk + α2G3(α‖r‖)δikrj ,

(106)
where δij is the Kronecker delta and r = x − y. Here, the functions G1–G3 are

G1(ρ) = −2ρ2K0(ρ) + (ρ2 + 4)ρK1(ρ) − 4

2πρ4
, (107)

G2(ρ) = 4ρ2K0(ρ) + (ρ2 + 8)ρK1(ρ) − 8

πρ6
, (108)

G3(ρ) = ρK1(ρ) − 1

2πρ2
. (109)

Since they are expressed in terms of the modified Bessel functionsK0 andK1, we can
use the decompositions (22) and (55) to write the expressions in explicit singularities.
We have

G1(ρ) = GS
1 (ρ) + GL

1 (ρ) log ρ, (110)

G2(ρ) = GS
2 (ρ) + GL

2 (ρ) log ρ + 1

8πρ2
− 1

πρ4
, (111)

G3(ρ) = G3
S(ρ) + GL

3 (ρ) log ρ, (112)
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where

GS
1 = −2ρKS

0 (ρ) + (ρ2 + 4)KS
1 (ρ) + ρ

2πρ3
, GL

1 = 2ρI0(ρ) − (ρ2 + 4)I1(ρ)

2πρ3
, (113)

GS
2 = 32ρKS

0 (ρ) + 8(ρ2 + 8)KS
1 (ρ) − ρ(ρ2 − 16)

8πρ5
, GL

2 = (ρ2 + 8)I1(ρ) − 4ρI0(ρ)

πρ5
, (114)

GS
3 = KS

1 (ρ)

2πρ
, G3

L = I1(ρ)

2πρ
. (115)

With these definitions the kernel-split form of the stresslet is

Tijk(r) =
(
T S

ijk(r) + T L
ijk(r) log(α)

)
+ T L

ijk(r) log ‖r‖ + T C
ij (r)

rk

‖r‖ + T Q rirj rk

‖r‖4 ,

(116)

Gijk(r) = GS
ijk(r) + T L

ijk(r) log ‖r‖ + T C
ij (r)

rk

‖r‖ + T Q rirj rk

‖r‖4 (117)

where

GS
ijk(r) = α2T S

1 (α‖r‖)(δjkri + δikrj + δij rk) + α4T S
2 (α‖r‖)ri rj rk + α2T S

3 (α‖r‖)δikrj , (118)

T S
ijk(r) = α2T L

1 (α‖r‖)(δjkri + δikrj + δij rk) + α4T L
2 (α‖r‖)ri rj rk + α2T L

3 (α‖r‖)δikrj , (119)

T C
ij (r) = α2ri rj /8π, (120)

T C
ij (r) = −1/π . (121)
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