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ADAPTIVE QUADRATURE BY EXPANSION FOR LAYER
POTENTIAL EVALUATION IN TWO DIMENSIONS∗

LUDVIG AF KLINTEBERG† AND ANNA-KARIN TORNBERG†

Abstract. When solving partial differential equations using boundary integral equation meth-
ods, accurate evaluation of singular and nearly singular integrals in layer potentials is crucial. A
recent scheme for this is quadrature by expansion (QBX), which solves the problem by locally ap-
proximating the potential using a local expansion centered at some distance from the source bound-
ary. In this paper we introduce an extension of the QBX scheme in two dimensions (2D) denoted
AQBX—adaptive quadrature by expansion—which combines QBX with an algorithm for automated
selection of parameters, based on a target error tolerance. A key component in this algorithm is the
ability to accurately estimate the numerical errors in the coefficients of the expansion. Combining
previous results for flat panels with a procedure for taking the panel shape into account, we derive
such error estimates for arbitrarily shaped boundaries in 2D that are discretized using panel-based
Gauss–Legendre quadrature. Applying our scheme to numerical solutions of Dirichlet problems for
the Laplace and Helmholtz equations, and also for solving these equations, we find that the scheme is
able to satisfy a given target tolerance to within an order of magnitude, making it useful for practical
applications. This represents a significant simplification over the original QBX algorithm, in which
choosing a good set of parameters can be hard.
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1. Introduction. Integral equation methods are a class of numerical methods
that are based on the reformulation of an elliptic partial differential equation (PDE)
as a boundary integral equation. When applicable, this solution approach has sev-
eral attractive features. Among these are high-order discretization methods, well-
conditioned linear systems after discretization, a reduced number of unknowns com-
pared to volume methods, and straightforward handling of moving boundaries.

A suitable starting point for our discussion on integral equation methods is the
representation of the solution u using layer potentials, which are evaluated by inte-
grating the PDE’s fundamental solution G and a layer density σ over the domain
boundary ∂Ω. We represent u as a linear combination of the double layer potential
D and the single layer potential S,

u(z) = Dσ(z) + αSσ(z) =

∫
∂Ω

∂G(z, w)

∂nw
σ(w) dsw + α

∫
∂Ω

G(z, w)σ(w) dsw, z ∈ Ω,

(1)

where nw denotes the unit normal pointing into Ω. For a Dirichlet problem with
boundary condition u = f , considering the limit Ω 3 z → ∂Ω of (1) leads to a second
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kind integral equation in σ,(
1

2
I +D + αS

)
σ(z) = f(z), z ∈ ∂Ω.(2)

This is a generic form for a Dirichlet problem, and we will later define the forms
for the interior Laplace and the exterior Helmholtz equations. The constant α is
selected such that the integral equation has a unique solution and is well-conditioned
[7]. Nyström discretization of this equation using a suitable quadrature rule generates
a dense linear system that can be solved rapidly by exploiting the fact that the off-
diagonal blocks are of low rank. Solution methods include the fast multipole method
(FMM) [12] and fast direct methods [11, 17, 19].

The main difficulty in the procedure outlined above lies in finding a quadrature
rule that can evaluate the layer potentials Sσ(z) and Dσ(z) when the target point z
is close to or on the boundary ∂Ω. In this case, the integrals of the layer potentials
are nearly singular or singular, requiring specialized quadrature methods. For two-
dimensional problems, several efficient such methods are available; see the summaries
[13] and [14]. Some of the two-dimensional methods can be extended to axisymmetric
surfaces in three dimensions (3D) [15]. However, for general surfaces in 3D the avail-
able methods are not as mature as those in two dimensions (2D). We refer to [23] for
a recent summary of the current state of the art.

1.1. QBX. In this paper, we will focus on the relatively recent method of quadra-
ture by expansion (QBX) [5, 18]. The method provides a way of evaluating both
singular and nearly singular integrals by representing the layer potential as a local ex-
pansion, centered at a point some distance away from the boundary. While originally
proposed for Helmholtz in 2D, it can be generalized to other PDEs in 2D and 3D; see
[1, 3, 24] for its successful use in several applications. A strength of QBX is that it
uses the same type of local expansions as the FMM, which allows the two methods to
be combined into a fast method for evaluating layer potentials at arbitrary locations.
This is a topic of ongoing research [22]. As with most methods, however, QBX solves
one problem and introduces another. While the problem of evaluating layer potentials
on or very close to the boundary is solved, it is replaced with the new problem which
is how to efficiently compute the local expansion of the layer potential. In particu-
lar, computing the expansion coefficients entails evaluating a series of integrals with
increasing order of near singularity. Effectively one has traded a hard problem for
several easier problems. Nevertheless, QBX is still a competitive method for these
problems, especially since it has a solid analytical groundwork [9].

One of the difficulties of QBX is that of parameter selection. The convergence of
the local expansion is governed by the order p at which it is truncated, and by the
distance r between the boundary and the expansion center. The expansion coefficients
are computed using a quadrature rule for smooth integrands, and for them to be
accurate it is necessary to upsample the boundary points by some factor κ. These three
parameters together affect the two competing errors of QBX: the truncation error and
the coefficient error (often referred to as the quadrature error). The truncation error
increases with r and decreases with p, while the coefficient error increases with p and
decreases with κ and r (see [1, Fig. 3] for an example). Together r, p, and κ form
a large parameter space, and how to best set these parameters is not clear. Instead,
experimentation must be used to determine good parameter ranges for a specific
application. This is in itself not unfeasible, but it would be preferable to reduce the
number of free parameters.



ADAPTIVE QUADRATURE BY EXPANSION A1227

1.2. Contribution. In this paper we propose a scheme for adaptively setting
the order p and upsampling factor κ at the time of computation, such that the error
is maintained below a target tolerance. The key ingredient for this scheme to be
successful is the ability to accurately estimate the magnitude of the coefficient error,
which is the quadrature error in the expansion coefficients. Such estimates were
derived in [2] for simple geometries in 2D, namely, flat Gauss–Legendre panels and
the trapezoidal rule on the unit circle. Here we extend these estimates, by locally
using a polynomial to represent the mapping between a flat panel and a panel of
general shape. This greatly increases the accuracy of the estimates, and allows us to
build an adaptive QBX scheme based on them. We here restrict ourselves to analyzing
Gauss–Legendre panel quadrature, but the methodology could equally well be applied
to a discretization using the trapezoidal rule.

Taking into account the mapping of the parametrization when analyzing nearly
singular quadrature errors is by itself not new; a discussion on nearly singular quadra-
ture errors similar to ours can be found in [5]. Our main contribution in this regard
is the construction of an explicit representation of the mapping, which we then invert
in order to compute an error estimate.

This paper is organized as follows: In section 2 we introduce the general struc-
ture of our scheme, and derive the details for the Laplace double layer potential and
the Helmholtz combined field potential. In section 3 we show how to compute the
coefficient error estimates necessary for the scheme to be useful. In section 4 we
briefly discuss how to combine the scheme with a fast method. In section 5 we show
a selection of numerical results that illustrate the performance of our method.

2. Foundations of AQBX. In this section we begin by introducing the foun-
dations of our method using a generic notation, before we give the specific details for
the Laplace and Helmholtz equations. We start from a given layer potential represen-
tation,

u(z) =

∫
∂Ω

G(z, w)σ(w) dsw.(3)

To evaluate this using adaptive QBX (AQBX), we first need to split the fundamental
solution using a suitable addition theorem,

G(z, w) =

∞∑
m=0

Arm(w, z0) ·Brm(z, z0),(4)

where Arm and Brm are either vectors or scalars, depending on the fundamental solu-
tion. For a given r, the above addition theorem is valid for

|z − z0| < r ≤ |w − z0|.(5)

For the specific formulas for Laplace and Helmholtz, see (24) and (35). We assume
that (4) is normalized such that the following holds for |z−z0| ≤ r and integer m ≥ 0:∣∣Brm(z, z0)

∣∣ ≤ 1,

max
m,z

∣∣Brm(z, z0)
∣∣ = 1.

(6)

Here, and throughout the paper, we let | · | denote the `2-norm for vectors, and
the complex modulus for scalars. If the second condition holds for each m, i.e.,
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maxz |Brm(z, z0)| = 1, then we get slightly sharper error estimates in Algorithm 1.
This is, however, not necessary, and indeed only holds for the Laplace formulation
used in this paper. The addition theorem allows us to pick an expansion center z0,
determine r as

r = min
w∈∂Ω

|w − z0|,(7)

and evaluate the layer potential as a local expansion in the neighborhood of z0,

u(z) =

∞∑
m=0

am ·Brm(z, z0), |z − z0| ≤ r,(8)

where

am =

∫
∂Ω

Arm(w, z0)σ(w) dsw.(9)

The fact that (8) also holds at the equality |z − z0| = r was shown in [9] for the
Laplace and Helmholtz equations, but can be generalized to other kernels, e.g., the
Stokes equations [1]. This allows us to also evaluate the expansion on ∂Ω, at the
single point which is closest to z0. In fact, in [5] it is shown that the expansion even
converges in a disc about z0 with radius R > r, as long as the density σ is analytic
inside that disc.

In a computational scheme the local expansion is truncated at a maximum order
p, and the coefficients, which we now denote ãm, are computed using a suitable
quadrature rule. This gives us the QBX approximation of the layer potential,

up(z) =

p∑
m=0

ãm ·Brm(z, z0).(10)

The error in this approximation can, assuming exact arithmetic, be separated into a
truncation error eT and a coefficient error eC [9],

u(z)− up(z) = u(z)−
p∑

m=0

am ·Brm(z, z0)︸ ︷︷ ︸
eT

+

p∑
m=0

(am − ãm) ·Brm(z, z0)︸ ︷︷ ︸
eC

.(11)

2.1. Truncation error. The truncation error eT of the scheme arises because
we limit the local expansion to p + 1 terms. In our normalized form (6) it can be
bounded by

|eT | =

∣∣∣∣∣∣
∞∑

m=p+1

am ·Brm(z, z0)

∣∣∣∣∣∣ ≤
∞∑

m=p+1

|am| .(12)

It was shown in [9] that the truncation error for several kernels satisfies

eT ≤M(p, r)rp+1‖u‖Cp+1(|z−z0|≤r)(13)

for some positive M(p, r). In our experience, the truncation error typically decays
exponentially in p, with a rate that is proportional to r. Finding a usable a priori
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estimate for the error is hard, since it depends on both the local geometry of ∂Ω
and the regularity of the density σ in a nontrivial way. However, assuming that the
expansion coefficients decay exponentially, a good estimate for the truncation error
is

|eT | ≈
∣∣∣ap+1 ·Brp+1(z, z0)

∣∣∣ ≤ ∣∣ap+1

∣∣ .(14)

In practice we only have the coefficients up to ap. Therefore, we can define a useful
(and usually conservative) a posteriori estimate as

|eT | ≈
∣∣∣ap ·Brp(z, z0)

∣∣∣ ≤ ∣∣ap∣∣ .(15)

2.2. Coefficient error. The coefficient error eC in (11) is a result of the nu-
merical evaluation of the coefficient integrals (9) for m = 0, . . . , p, which for a given
boundary ∂Ω is evaluated using some n-point quadrature rule. Assuming that the
density σ and the boundary ∂Ω are well-resolved by that quadrature (which is a pre-
requisite for the underlying Nyström discretization), the main source of the error is
the near singularity in Arm when evaluated at z0. The order of this near singularity
typically grows with m, and to counter this the density must be upsampled (by in-
terpolation) to a grid which is fine enough to resolve Arm. The amount of upsampling
required can be determined through EC(n,m), which is an accurate a priori estimate
of the coefficient error in term m when using n quadrature nodes,

EC(n,m) ≈|am − ãm| ≥
∣∣(am − ãm) ·Brm(z, z0)

∣∣ .(16)

We will in section 3 show how to derive such error estimates for the cases of the
Laplace and Helmholtz equations.

Remark 1 (resolution error). Here we only discuss errors in the coefficients ãm
due to near singularities in the integrals (9). However, there is also a lower bound on
the accuracy of the coefficients, imposed by how well the underlying grid resolves the
boundary ∂Ω and the layer density σ. For a given panel, this error could be estimated
by analyzing a modal expansion of the grid point coordinates and density values, such
as the Legendre polynomial expansion used in section 3. This is briefly explored in
section 5.3, though a more in-depth analysis is beyond the scope of the present paper.

2.3. The AQBX scheme. Let us now assume that we have a discretization of
∂Ω characterized by n, which for a global quadrature denotes the total number of
points, and for a panel-based quadrature denotes the number of points on each panel.
Denoting that quadrature Qn, we define a combined interpolation and quadrature
operator Qκn, which computes the quadrature by first upsampling the density to κn
points (for simplicity we assume κ integer). Furthermore, we assume that the error
when computing a coefficient am is well estimated by a function EC(κn,m). Then
the adaptive algorithm for evaluating u(z) in the neighborhood of z0 to a tolerance ε
can be summarized using Algorithms 1 and 2. Note that if Algorithm 1 has produced
p + 1 coefficients, then Algorithm 2 is guaranteed to terminate within p + 1 itera-
tions, since |δp| ≤ |ap| < ε. For more conservative termination criteria, one can use
max(|am−1|, |am|) < ε and max(|δm−1|, |δm|) < ε to take into account any even/odd
behavior in the expansion.

2.4. Specific applications. We will now proceed with formulating AQBX for
two different applications: the Laplace double layer potential and the Helmholtz com-
bined field potential.
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Algorithm 1 Compute expansion coefficients at z0 to tolerance ε.

function Expansion coefficients(z0, ε)
κ← 1, m← 0
repeat

while EC(κn,m) > ε do . Check eC estimate
κ← κ+ 1 . Increase upsampling rate

end while
am ← Qκn[Arm(·, z0)σ(·)] . Compute coefficient
m← m+ 1

until |am| < ε . Break when eT estimate below tolerance
return {am}pm=0

end function

Algorithm 2 Evaluate u(z) to tolerance ε using expansion at z0.

function Evaluate expansion(z, z0, {am}pm=0, ε)
u← 0, m← 0
repeat

δm ← am ·Brm(z, z0) . Evaluate mth expansion term
u← u+ δm
m← m+ 1

until |δm| < ε . Break when eT estimate below tolerance
return u

end function

2.4.1. Laplace equation. We first consider the Laplace Dirichlet problem in a
domain Ω bounded by a boundary ∂Ω,

∆u = 0 in Ω,(17)

u = f on ∂Ω.(18)

The fundamental solution to this PDE is

φ(z, w) =
1

2π
log|z − w| .(19)

The interior Dirichlet problem can be represented using the double layer potential,

u(z) = Dσ(z) =

∫
∂Ω

∂φ(z, w)

∂nw
σ(w) dsw.(20)

In complex notation this can be compactly represented as

u(z) = Re v(z),(21)

v(z) =
1

2π

∫
∂Ω

nw
z − wσ(w) dsw.(22)

On ∂Ω the density σ satisfies the integral equation(
1

2
I +D

)
σ = f.(23)
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It should be noted that this particular layer potential actually has a smooth limit on
the boundary, so no special quadrature is needed for solving the integral equation,
unless different parts of the boundary are close to each other. Special quadrature is,
however, still needed for evaluating the solution close to the boundary, once σ has
been computed.

Starting from the Taylor expansion of the Cauchy kernel,

−1

z − w =

∞∑
m=0

(z − z0)m

(w − z0)m+1
,(24)

it is straightforward to derive the AQBX formulation (4) for v(z),

Arm(w, z0) = − rmnw
2π(w − z0)m+1

,(25)

Brm(z, z0) =
(z − z0)m

rm
.(26)

Note that, by these definitions together with (9), the real part of the coefficient a0 will
simply hold the value of the double layer potential evaluated at z0, i.e., Re a0 = u(z0).

2.4.2. Helmholtz equation. We now consider the Helmholtz Dirichlet problem
in an unbounded domain Ω exterior to a boundary ∂Ω, which for a wavenumber k is
stated as

∆u+ k2u = 0 in Ω,(27)

u = f on ∂Ω.(28)

The solution must satisfy the Sommerfeld radiation condition for r = |z|,

lim
r→∞

r1/2

(
∂u

∂r
− iku

)
= 0,(29)

which gives a fundamental solution that is essentially the zeroth-order Hankel function
of the first kind,

φk(z, w) =
i

4
H

(1)
0 (k|z − w|).(30)

It is possible to represent the solution using the combined field integral representa-
tion,1

u(z) =

∫
∂Ω

(
∂φk(z, w)

∂nw
− ik

2
φk(z, w)

)
σ(w) dsw =

(
Dkσ −

ik

2
Skσ

)
(z).(31)

Here the double layer kernel is

∂φk(z, w)

∂nw
=
ik

4
H

(1)
1 (k|z − w|) (z − w) · nw

|z − w|(32)

=
ik

4
H

(1)
1 (k|z − w|)|z − w|Re

[
nw
z − w

]
.(33)

1The general form of the representation is Dk − iηSk. We have here set η = k/2, following [14].
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On the boundary we get the integral equation(
1

2
I +Dk −

ik

2
Sk

)
σ = f.(34)

To formulate AQBX for the combined field representation, we start from the Graf
addition theorem [20, section 10.23(ii)],

i

4
H

(1)
0 (k|z − w|) =

∞∑
m=−∞

i

4
H(1)
m (krw)e−imθwJm(krz)e

imθz , rz < rw.(35)

Here (rw, θw) and (rz, θz) are the polar coordinates of w − z0 and z − z0,

rw = |w − z0|, rz = |z − z0|,

e−imθw =
|w − z0|m
(w − z0)m

, eimθz =
(z − z0)m

|z − z0|m
.

(36)

We can thus form an expansion for the kernel of the combined field representation
(31) as

∂φk(z, w)

∂nw
− ik

2
φk(z, w) =

∞∑
m=−∞

cm(w, z0)Jm(krz)e
imθz ,(37)

cm(w, z0) = dm(w, z0)− ik

2
sm(w, z0).(38)

Here sm is an immediate result of (35),

sm(w, z0) =
i

4
H(1)
m (krw)e−imθw ,(39)

while dm is obtained by differentiation of (39). A compact form for dm was derived
in [5],

dm(w, z0) =
ik

8

(
H

(1)
m−1(krw)e−i(m−1)θw n̄w −H(1)

m+1(krw)e−i(m+1)θwnw

)
.(40)

The Bessel functions Jm decay rapidly with m. It is, however, easy to experimentally
verify that a normalization satisfying (6) is obtained by using the first term of the
power series for Jm(kr) [20, section 10.4, section 10.8],

J±m(kr) = (±1)m
1

m!

(
kr

2

)m
+O

(
1

(m+ 1)!

(
kr

2

)m+2
)
, m ≥ 0.(41)

We have defined our general AQBX formulation (4) for indices m ≥ 0. To fit the
expansion (37) into this we let Arm and Brm be vector valued for m > 0, representing
the terms with indices ±m in (37). The AQBX formulation for the combined field
representation is then given by

Ar0(w, z0) = c0(w, z0),(42)

Br0(z, z0) = J0(krz)(43)
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and, for m > 0,

Arm(w, z0) =

√
2

m!

(
kr

2

)m (
cm(w, z0), c−m(w, z0)

)
,(44)

Brm(z, z0) =
m!√

2

(
2

kr

)m (
Jm(krz)e

imθz , J−m(krz)e
−imθz

)
,(45)

such that the coefficients am ∈ C2 for m > 0.
We again note that the coefficient a0 (9) will hold the value of the potential at

z0, since (trivially) s0 = φk in (30) and (through (33))

(46) d0(w, z0) = − ik
4
H

(1)
1 (krw) Re

[
e−iθwnw

]
=
∂φk(z0, w)

∂nw
.

3. Coefficient errors. In this section we derive a central piece of AQBX: the
coefficient error estimate EC required in Algorithm 1. We will consider the layer
potentials of section 2.4 combined with a panel-based quadrature, where the boundary
curve is subdivided into smaller segments, each of which is discretized using an n-point
Gauss–Legendre quadrature. This is sometimes referred to as a composite Gauss–
Legendre quadrature.

We begin by considering the error in the contribution to a coefficient from a single
panel; the total error can then be computed as the sum of errors from all adjacent
panels. For this, let Γ be an open curve (i.e., a panel) parametrized by an analytic
function γ(t) ∈ C, t ∈ [−1, 1], with the normal defined as n(t) = iγ′(t)/|γ′(t)|, and γ
oriented such that n points into the domain Ω. For simplicity we denote by σ(t) the
pullback of σ under γ, i.e., σ(t) = σ(γ(t)).

3.1. Laplace coefficient error. Beginning with QBX for the Laplace double
layer potential (section 2.4.1), the expansion coefficients are computed as

am = −r
m

2π

∫
Γ

σ(w)nw
(w − z0)m+1

dsw(47)

= − ir
m

2π

∫ 1

−1

σ(t)

(γ(t)− z0)m+1
γ′(t) dt.(48)

The coefficient errors are introduced when this integral is evaluated using a discrete
quadrature rule. In a boundary integral equation context, we assume a panel Γ such
that γ and σ are well-resolved by an n-point Gauss–Legendre quadrature rule. We
will here focus on the standard choice n = 16.

For our discussion on quadrature errors, we introduce the following notation: Let I
denote the integral over [−1, 1], and let Qn denote the Gauss–Legendre approximation
of that integral,

I[f ] =

∫ 1

−1

f(x) dx,(49)

Qn[f ] =

n∑
i=1

f(xi)wi.(50)

The quadrature error Rn is then defined as

Rn[f ] = I[f ]−Qn[f ],(51)

and I, Qn, and Rn are all linear functionals on C(−1, 1).



A1234 LUDVIG AF KLINTEBERG AND ANNA-KARIN TORNBERG

If the above assumptions on the resolution hold, then we can expect the quadra-
ture error to be small for the integrand (48), provided that z0 is far away from Γ. If
on the other hand z0 is close to Γ, then the quadrature error will be dominated by
the nearly singular quadrature error that arises when the integrand is evaluated close
to its pole.

To estimate nearly singular quadrature errors, we can proceed in the same way as
in [2]. The central property which we will use is the following: Let f(t) be a function
which is analytic on [−1, 1] and everywhere inside a contour C enclosing [−1, 1], except
at a finite number of poles {tj}Nj=0 enclosed by C. If f is integrated on [−1, 1] using
the n-point Gauss–Legendre rule, then the quadrature error (51) is given by [8]

Rn[f ] =
1

2πi

∫
C
f(t)kn(t) dt−

N∑
j=0

Res
[
f(t)kn(t), tj

]
,(52)

where kn is the characteristic remainder function,

kn(t) =
1

Pn(t)

∫ 1

−1

Pn(s)

t− s ds.(53)

While not available in closed form, it can in the limit n→∞ be shown to satisfy [6,
App.]

kn(t) =
2π

(t±
√
t2 − 1)2n+1

(
1 +O

(
1/n

))
,(54)

with the sign in the denominator given by the sign of Re t. This result, though
asymptotic, is accurate already for small n [2]. Since n ≥ 1, we can bound the
remainder function as ∣∣kn(t)

∣∣ ≤ 2πC(t)

|t±
√
t2 − 1|2n+1

(55)

for some C(t) > 0. If t lies on the Bernstein ellipse Bρ, defined as the ellipse with foci
±1 where the semimajor and semiminor axes sum to ρ > 1, then |t ±

√
t2 − 1| = ρ

and ∣∣kn(t)
∣∣ ≤ 2πCρ

ρ2n+1
,(56)

where Cρ = maxt∈Bρ C(t). If |f | ≤ Mρ on some Bernstein ellipse Bρ, and we let the
contour integral in (52) follow that ellipse, then the integral can be bounded as∣∣∣∣∣ 1

2πi

∫
Bρ

f(t)kn(t) dt

∣∣∣∣∣ ≤ CρMρ

ρ2n+1

∫
Bρ

|dt| ≤ 4CρMρ

ρ2n
.(57)

The last above step is motivated by the geometry of a Bernstein ellipse; the ratio of
the circumference of Bρ has its maximum as ρ→ 1, in which case the ellipse collapses
onto [−1, 1]. The contribution from the contour integral in (52) vanishes completely
if f(t)kn(t)t→ 0 as |t| → ∞, and is generally small compared to the residue for poles
close to [−1, 1], as was noted in [2].
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In the case where f has a simple pole t0, we can bound the error as∣∣Rn[f ]
∣∣ ≤ 2πC(t0)

|t0 ±
√
t0 − 1|2n+1

lim
t→t0

∣∣(t− t0)f(t0)
∣∣+

4CρMρ

ρ2n
.(58)

Now consider the more general case, when f has a single pole t0 of order m+ 1 (the
case of several poles follows trivially). For the residue we can write

Res
[
f(t)kn(t), t0

]
=

1

m!

m∑
`=0

(
`

m

)
k(m−`)
n (t0) lim

t→t0

[
d`

dt`
(t− t0)m+1f(t)

]
,(59)

since kn(t0) is smooth for t /∈ [−1, 1]. Defining

‖f‖Cm(t0) := max
`≤m

lim
t→t0

∣∣∣∣∣d`fdt`

∣∣∣∣∣ ,(60)

the residue can be bounded as∣∣Res
[
f(t)kn(t), t0

]∣∣ ≤ 2m

m!

∥∥kn∥∥Cm(t0)

∥∥(t− t0)m+1f(t)
∥∥
Cm(t0)

.(61)

This allows us to bound the quadrature error as∣∣Rn[f ]
∣∣ ≤ 2m

m!

∥∥kn∥∥Cm(t0)

∥∥(t− t0)m+1f(t)
∥∥
Cm(t0)

+
4CρMρ

ρ2n
.(62)

The above bound will overestimate the error by a large factor. In practice a good
approximation of the error is achieved if we neglect the contribution from the contour,
under the assumption that the pole is close to the interval, and assume that kn varies
much more rapidly with t than the other factors. Only keeping the term in (59) with
the highest derivative in kn, we get the error approximation

Rn[f ] ≈ − 1

m!
k(m)
n (t0) lim

t→t0

(
(t− t0)m+1f(t)

)
.(63)

This, with the remainder function evaluated using (54), is the approximation that we
will be using henceforth. The derivatives of kn can (at least for small m) be derived
analytically from (54) or, as shown in [2], approximated as

k(m)
n (t) ≈ kn(t)

(
∓ 2n+ 1√

t2 − 1

)m
.(64)

Returning to the QBX coefficients of the Laplace double layer potential, the
integral (47) clearly has a pole of order m + 1 at z0. In parametrized form (48) the
pole instead lies at the point t0 ∈ C, such that

γ(t0)− z0 = 0.(65)

Note that evaluating γ(t0) corresponds to evaluating an analytic continuation of γ(t)
in some neighborhood of [−1, 1]. Denoting by ãm the approximation of am (as defined
in (48)), and also assuming that there exists an analytic continuation of σ, then we
have from (63) that the error can be approximated as

am − ãm = Rn

[
− irmσγ′

2π(γ − z0)m+1

]
≈ irm

2πm!
k(m)
n (t0) lim

t→t0

(t− t0)m+1σ(t)γ′(t)
(γ(t)− z0)m+1

.(66)
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This we can simplify by noting that since z0 = γ(t0),

lim
t→t0

(t− t0)m+1

(γ(t)− z0)m+1
=

1

(γ′(t0))m+1
.(67)

Thus a coefficient error estimate EC(n,m) ≈ |am − ãm| is given by combining (54),
(64), (66), and (67),

EC(n,m) =
rm

m!

∣∣∣∣∣ 2n+ 1

γ′(t0)
√
t20 − 1

∣∣∣∣∣
m

|σ(t0)|
|t0 ±

√
t20 − 1|2n+1

.(68)

This result is essentially a generalization of [2, Thm. 1] to curved panels.
The estimate (68) holds well in the limit n → ∞, but will lose accuracy with

increasing m for a fixed n. We have in practice found that it starts losing its reliability
around m > n/2, so that it then is safer to trigger an upsampling in Algorithm 1,
instead of continuing to rely on the estimate.

Though the above derivation is rather straightforward, some more work is required
if we want to evaluate (68) in practice, since that requires finding t0 and being able
to evaluate σ(t0) and γ(t0). For this, one would ideally like to have access to analytic
expressions for σ and γ, but what we typically have is instead the values of the
functions at the quadrature nodes. To be able to evaluate (68) using this pointwise
data, we first need to construct continuations of γ and σ. Then we need to solve
(65) using the continuation of γ, in order to find t0 and finally evaluate the estimate.
This may sound hard, but can actually be done in an efficient way using polynomial
extrapolation.

Beginning with the continuation of γ, let ti and wi, i = 1 . . . n, be the nodes and
weights of the n-point Gauss–Legendre quadrature. We can then let Pn[γ](t) be the
polynomial of degree n− 1 that interpolates γ(t) at the nodes ti. For this high-order
(n = 16) interpolation to be accurate, we need to compute Pn[γ] in a way that is both
well-conditioned and stable [27, Chap. 14]. The distribution of the Legendre points
ti ensures that our interpolation problem is well-conditioned. For stability, we use as
our basis the Legendre polynomials P`(t),

Pn[γ](t) =

n−1∑
`=0

γ̂`P`(t).(69)

These are orthogonal on [−1, 1], allowing us to explicitly compute the coefficients γ̂`
as

γ̂` =

n∑
m=1

L`mγ(tm), ` = 0, . . . , n− 1,(70)

where, for a given n, L is a constant matrix with elements

L`m =
2`+ 1

2
P`(tm)wm.(71)

To improve convergence in the following step, we assume that Γ has endpoints at
−1 and 1; this can be achieved for any open curve by first applying a simple scaling
and rotation to both Γ and z0. Letting the interpolant Pn[γ](t) be the analytic
continuation of γ(t), we can now find t0 in (65) by instead solving

Pn[γ](t0) = z0,(72)
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−1 1

t0

t ∈ C

z0

z = γ(t)

Fig. 1. Illustration of how the analytic continuation of γ maps the vicinity of [−1, 1] to the
space surrounding Γ. Here Γ is a segment of the starfish domain seen in Figure 3. Polynomial
interpolation of γ on a 16-point panel gives a locally very accurate approximation of the continuation:∣∣γ − Pn[γ]

∣∣ < 10−7 on the shown grid.

using a numerical root-finding algorithm. This does, for the purposes of error es-
timation, work very well in the near neighborhood of Γ; see example in Figure 1.
The Legendre polynomials P`(t) are evaluated using the standard recurrence relation
[20, section 14.10.3], which holds also for complex t [20, section 14.21(iii)]. The poly-
nomials grow exponentially in ` for t /∈ [−1, 1], but we have not observed any stability
issues related to this. In particular, the coefficients γ` of a well-resolved panel decay
faster than the polynomials P`(t) grow for the range of t-values that are of interest to
us.

Equation (72) can be solved efficiently using Newton’s method, but the choice of
starting guess can be important, especially near concave regions of the curve (e.g.,
below the curve of Figure 1). In such regions the inverse mapping t0 = γ−1(z0) is
no longer single valued, and for our estimate to be accurate we want the solution t0
that predicts the largest error, when the estimate is evaluated at that point. This
“worst solution” can often be found by solving with t0 = ±1 as starting guesses and
comparing the results; this strategy was used for the results shown to the right in
Figure 2. As an alternative, one can use t0 = z0 as a starting guess (given the above
assumptions on the endpoints of Γ). This simpler strategy works well for practical
purposes, and is what we use throughout the remainder of this paper.

Once t0 is found, we are able to evaluate the coefficient error estimate as given in
(68). The value of γ′(t0) can be found by differentiation of the interpolant,

γ′(t0) = P ′n[γ](t0).(73)

We can also evaluate σ(t0) through an interpolating polynomial,

σ(t0) = Pn[σ](t0).(74)

This works very well if σ is well-resolved on Γ, and can be used to obtain the fine-
scale correspondence between error and estimate seen in Figure 3. A less expensive
alternative is to use the max norm of σ on the interval/panel,

σ(t0) ≈ ‖σ(t)‖L∞(−1,1) = ‖σ(z)‖L∞(Γ).(75)
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Fig. 2. Quadrature errors when evaluating the integral (48) for m = 0 and σ = 1 on a flat and
a curved panel. These panels correspond to those shown in Figure 1. Colored fields are actual error
levels, contour lines are computed using the error estimate (68) with t0 determined by inverting
Pn[γ](t). The ellipses to the left are the Bernstein ellipses.

Fig. 3. Error curves when evaluating the Laplace double layer potential directly using 27 panels
of equal arc length, with 16 points on each panel. Colored fields represent the error compared to
the exact solution. Black contour lines in the top right are computed using the estimate (76) with
(74), and coincide almost perfectly with the actual error. Black contour lines in the bottom right
are computed without the Im[·] in the estimate (76), which produces smooth contours that bound the
error curves rather than lie on top of them. This would be enough in most practical applications.

This works well in practice, as we mainly need to get the order of magnitude right,
and also appears to be slightly more robust whenever σ is not fully resolved on Γ,
especially for Helmholtz (see Figures 4 and 5). We use this approach in the results of
section 5.

The above results can also be used for estimating the nearly singular quadrature
error when evaluating the double layer potential (20) near Γ and, hence, to determine
when AQBX needs to be used. To that end, we simply use the observation that
u(z0) = Re a0. Denoting by ũ(z0) the potential evaluated using direct quadrature, we
thus have from (66) that∣∣u(z0)− ũ(z0)

∣∣ ≈ 1

2π

∣∣Im [σ(t0)kn(t0)
]∣∣ .(76)

This estimate, when evaluated using the above procedure, is very accurate. As an
example, in Figure 3, we consider the Laplace Dirichlet problem in a starfish domain.
The density is computed by solving (23) using the Nyström method and a right-hand
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side given by a collection of point sources (marked by + in the figure). The solution
is then evaluated inside the domain directly using the composite Gauss–Legendre
quadrature, and compared to the reference solution given by the boundary condition.
Comparing these results to those in [2, Fig. 7], which used a flat panel approximation,
shows the importance of taking into account the inverse mapping of the target point.

3.2. Helmholtz coefficient error. We now turn to AQBX for the Helmholtz
combined field potential (section 2.4.2). When evaluating the expansion coefficients,
the Hankel functions in the integrands have a singularity as rw → 0, which to leading
order behaves like [20, section 10.4, section 10.8]

H
(1)
±l (krw) = −(±1)l

2l(l − 1)!

π
(krw)−l +O

(
(krw)−(l−2)

)
.(77)

The quadrature error due to near singularity is dominated by that from the highest-
order pole, so for the purposes of error estimation it is suitable to only keep the
highest-order Hankel function in the expression for (44), and to approximate that
Hankel function using only the first term of (77). We can then approximate (39) as

sm(w, z0) ≈ 0,(78)

and (40) as

d0(w, z0) = − ik
4
H

(1)
1 (krw)rw Re

[
nw

w − z0

]
≈ 1

2π
Re

[
nw

w − z0

](79)

and, for |m| > 0 and using (36),

dm(w, z0) ≈ k

8
H

(1)
|m|+1(krw)e−i(|m|+1)θwnw(80)

≈ k

8π
2|m|+1|m|!(krw)−(|m|+1)e−i(|m|+1)θwnw(81)

=
2|m||m|!
4πk|m|

nw
(w − z0)|m|+1

.(82)

Inserted into (42) and (44), this gives

Ar0(w, z0) ≈ 1

2π
Re

[
nw

w − z0

]
,(83)

Arm(w, z0) ≈
√

2 (1, 1)
rm

4π

nw
(w − z0)m+1

, m > 0.(84)

Note that in the above series of simplifications (79)–(84) we have removed constant
factors which are irrelevant to the magnitude of the error (i.e., −1 and i). Estimating
the error of these simplified integrands on a panel with parametrization γ, it follows
that

|a0 − ã0| ≈
∣∣∣∣∣Im Rn

[
σγ′

2π(γ − z0)

]∣∣∣∣∣ ,(85)

|am − ãm| ≈
∣∣∣∣∣Rn

[
rmσγ′

2π(γ − z0)m+1

]∣∣∣∣∣ , m > 0.(86)
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Fig. 4. Error curves when evaluating the Helmholtz combined field potential directly using 60
panels of equal arc length, with 16 points on each panel and the point sources located on a circle of
radius 0.2. The wavenumber is set to k = 4/h = 26.6, h being the length of the panels. Colored fields
represent the error compared to the exact solution, black contours are computed using the estimate
(89). The solid lines correspond to (89) with σ(t0) evaluated using (74), while the dashed lines use
the approximation (75).

Note that (85) is bounded by (86) with m = 0, so it is sufficient to use only (86), if
we can accept being on the conservative side for m = 0. Also note that the integrand
in (86) is exactly the same as in the error estimate for the Laplace double layer
potential (66). The conclusion is that, remarkably, the coefficient error estimate EC
for Helmholtz is identical to that previously derived for Laplace (68),

EC(n,m) =
rm
∣∣σ(t0)

∣∣
2πm!

∣∣γ′(t0)
∣∣m ∣∣∣k(m)

n (t0)
∣∣∣ .(87)

This correspondence between Laplace and Helmholtz also holds for the quadrature
error when evaluating the underlying potential itself. This can be seen from (85) and
the observation from (46) that a0 = u(z0),∣∣u(z0)− ũ(z0)

∣∣ ≈ 1

2π

∣∣Im [σ(t0)kn(t0)
]∣∣(88)

≤ 1

2π

∣∣σ(t0)kn(t0)
∣∣ .(89)

This estimate has been derived by simplifying the Helmholtz double layer kernel (79),
and noting that the singularity to leading order is identical to that of the Laplace
double layer. However, in experiments we can observe that the small-scale oscillations
predicted by (88) (and which are clearly noticeable in the Laplace case) only appear
for small wavenumbers, and it is therefore generally better to use (89). The reason for
the disappearance of the oscillations is unknown to us, though an interesting feature
is that they only seem to disappear when σ is the solution to (34). Setting σ = 1
and computing the error by comparing to a finer grid produces the oscillations also
for large wavenumbers.

As a demonstration, in Figure 4 we repeat the experiment of Figure 3, but for the
Helmholtz exterior Dirichlet problem. We set a number of point sources (marked ∗)
inside a starfish domain and solve the integral equation (34) using the discretization
scheme of [14]. The correspondence between error and estimate is still very good,
though not as excellent as in the Laplace case. Figure 5 shows that the estimate
appears to also work for a source point very close to the boundary, when the accuracy
of the solution σ has started to deteriorate. Here, when σ is no longer well-resolved,
one can clearly see that evaluating σ(t0) using the panel max norm (75) is more stable
than using polynomial extrapolation (74). Using (75) results in a useful error estimate



ADAPTIVE QUADRATURE BY EXPANSION A1241

Fig. 5. Here the discretization and visualization are the same as in Figure 4, but the source
is now located at a distance h/3 away from the panel. The error is still well-estimated close to the
boundary, where it is dominated by the nearly singular quadrature error, though evaluating σ(t0)
using the polynomial extrapolation (74) appears unstable. Further away from the boundary the error
is dominated by a lack of resolution, which our estimate will not capture.

close to the boundary, where the nearly singular quadrature error dominates. Further
away the error is due to σ not being accurate, something which our estimate does not
take into account.

It is worth noting that the error estimate (89) is independent of the wavenumber k.
This might come as a surprise, as one usually needs to increase the grid resolution with
increasing wavenumber. However, here we only take into account the nearly singular
quadrature error, under the assumption that far-field interactions are well-resolved.
The result simply reflects the fact that the singularity in the kernel is independent of k.

4. Local AQBX. Since QBX is a special quadrature scheme for target points
that are close to or on the boundary ∂Ω, it makes sense to only use QBX for those
parts of the boundary that are close to a given target point. This is known as “local
QBX” [21] (as opposed to “global QBX”), and can be particularly straightforward to
combine with a fast method. For panel-based quadrature on a simple curve this is
easy to implement; only the panels that are near a given expansion center are used in
the local expansion. Selecting panels to include can be done using an error estimate
of the layer potential, such as (76) in combination with a tolerance, or by simply
including a fixed number of neighboring panels (this works well if all panels are of
equal length). When evaluating the potential, the contribution from the near panels
is computed through the local expansion, while the contribution from the remaining
panels is computed directly using the underlying Gauss–Legendre quadrature.

Let the boundary be composed of a set of panels Γi,

∂Ω =
⋃
i

Γi.(90)

We can then denote by N the near panels that are included in the local expansion,
and by F the far panels that are evaluated directly. Note that this division must be
made such that the panels in F are well-separated from all target points at which the
expansion will be evaluated. If we write the layer potential as

u∂Ω(z) =

∫
∂Ω

G(z, w)σ(w) dsw,(91)

then the numerical approximation of u using local QBX can be written as

ũ∂Ω(z) = uNQBX(z) + uFdirect(z).(92)

To combine this with a fast method that directly evaluates the interactions between
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all source points (such as the FMM), one can simply subtract the direct contribution
from the near panels,

ũ∂Ω(z) = u∂Ω
fast(z)− uNdirect(z) + uNQBX(z).(93)

The last two terms in this expression can together be viewed as a correction term to
the direct quadrature. Since this correction only has local support, the local QBX
scheme is FMM compatible, in the sense introduced in [13]. This “black box” way of
using the fast method could potentially introduce cancellation errors, when the direct
contribution from the near panels is added and subtracted, though we have not ob-
served any such problems in practice. The alternative is to modify the FMM to ignore
those local contributions in the first place, which is nontrivial for complex geometries.

A subtle feature of local QBX is that the width of the segment N affects the
convergence rate of the local expansion. This is due to artificially induced endpoint
singularities at the interfaces between N and F , and has been discussed to some
extent in both [5] and [21]. The choice of width of N is therefore a balance; widening
N means more points contributing to each expansion, while narrowing N gives a
slower convergence of the expansion. Actually, not only is the convergence slower,
the exponential convergence of the truncation error (13) also tends to be less regular.
This in turn makes it harder for AQBX to correctly determine when to terminate.
We have found that a good balance is struck by using the five panels that are closest
to the expansion center.

5. Numerical experiments. We have implemented the above algorithms in
MATLAB, and used the FMM as implemented in FMMLIB2D [10] for fast far-field
evaluations. Timings will not be reported here, as our code is a proof of concept rather
than a production implementation. We will in the following numerical experiments
only report on the Helmholtz problem, as that is the more challenging one. Carrying
out the same experiments for the Laplace problem just results in similar, though
slightly better, results.

In our numerical experiments we will mainly use AQBX as a postprocessing tool,
meaning that we use it to evaluate the layer potential given by a known density. This
allows us to study the behavior of AQBX in isolation, without taking into account the
method used to compute the density. However, in section 5.4 we show that AQBX
can be also used for solving the integral equation.

For our experiments we set up the reference problem shown in Figure 6: The
Helmholtz problem in the domain exterior to the starfish curve γ(t) = (1+0.3 cos(10πt))
× e−2πit, t ∈ [0, 1], with Dirichlet boundary condition given by the potential from five
point sources in the interior domain. The point sources are randomly positioned
on a circle with radius 0.2 centered at the origin, with strengths that are randomly
drawn and then normalized such that ‖u‖∞ = 1 on ∂Ω. This way all errors reported
below are both relative and absolute.

We discretize the boundary using 200 Gauss–Legendre panels of order 16 and
equal arc length h, and position one expansion center at a distance r = h/4 in
the normal direction from each point on the boundary. The wavenumber is set to
k = 2/h = 44.36. The density σ is computed by solving the integral equation (34)
using the Nyström method of [14], which gives us a solution that has a relative error
of approximately 10−14 when using direct quadrature away from the boundary (mea-
sured on a circle of radius 2). Increasing the number of panels or decreasing k does
not significantly improve the accuracy of the solution, nor the accuracy of the QBX
evaluation.
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Fig. 6. Solution to Helmholtz equation (k = 44.36) given by five point sources located inside a
starfish domain.
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Fig. 7. Results when evaluating the solution to the Helmholtz equation using AQBX with
tolerance set to 10−10, marked as thick black line. Left: Distribution of error along ∂Ω, which shows
that the error stays close to the tolerance, though it is not strictly met. Right: Example showing
the behavior of AQBX at a single expansion center, when evaluating at the closest boundary point.
The error decays exponentially with expansion order, at the same rate as the coefficients am. At the
same time the coefficient error |am − ãm| is growing, but is well estimated by the estimate EC(m)
(86). Note the jump in coefficient error between m = 3 and m = 4, where the grid is upsampled to
maintain the error below tolerance.

Once we have computed σ, we can evaluate the layer potential using AQBX, and
compare the result to the exact solution given by the potential from the five point
sources. The error in AQBX has, in our tests, always been largest when evaluating
the layer potential on the boundary (where the integral is singular), so we mainly
report the errors as measured there.

5.1. Performance of the algorithm. We first perform a few experiments that
illustrate how AQBX works. Figure 7 shows the error along the entire boundary when
evaluating the solution using AQBX and a tolerance of 10−10. One can clearly see how
the magnitude of the coefficients am provides a good overestimate of the truncation
error, while the coefficient error is closely tracked by the estimate EC . Figures 8 and 9
show example results from when AQBX is used for evaluating the potential in the
domain, where the integral is nearly singular. It can be seen that AQBX is only
activated at the points where it is needed, and that the potential is then evaluated to
the desired accuracy at those points.

The lowest error that we can achieve using QBX (both adaptive and direct) for
this problem is around 10−12, which can also be seen in Table 1. This presents a loss
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Fig. 8. Errors when evaluating the potential of Figure 6 on a 500 × 500 grid, in the region
highlighted in Figure 4. The AQBX tolerance is set to 10−4, 10−8, and 10−12, from left to right,
and the region where AQBX is activated is determined using the error estimate for the potential
(89).

Fig. 9. Here the same data are plotted as in Figure 8, but with compressed color bars. This
makes it possible to see the structure of the remaining errors for each tolerance.

Table 1
Results for varying tolerance and r/h = 1/4, comparing AQBX and direct QBX on our refer-

ence problem. Error is measured on ∂Ω. Reported parameters are for AQBX an average over all
expansion centers (avg), and for direct QBX the optimal fixed values used at all centers (opt). Note
that the smallest error that we can obtain is around 10−12. This limitation holds also when using
direct QBX.

Tol. Eval. error Exp. order p Upsamp. rate κ Work W Speedup (avg)
ε

∥∥up − u∥∥∞ avg (opt) avg (opt) avg (opt) WQBX/WAQBX

10−4 1.4 · 10−4 5.6 ( 4) 1.1 ( 2) 6.0 ( 8) 1.3
10−6 1.7 · 10−6 7.0 ( 5) 1.5 ( 2) 10.4 ( 10) 1.0
10−8 1.5 · 10−8 8.8 ( 7) 1.9 ( 3) 17.0 ( 21) 1.2
10−10 2.2 · 10−10 10.3 ( 9) 2.3 ( 3) 23.2 ( 27) 1.2
10−12 2.0 · 10−12 12.2 ( 11) 2.6 ( 4) 32.2 ( 44) 1.4
10−13 1.1 · 10−12 13.3 ( 11) 2.8 ( 4) 37.6 ( 44) 1.2

of two digits of accuracy compared to the error of 10−14 achieved using the direct
quadrature away from the boundary. While we cannot immediately explain this loss,
it is reminiscent of the results in [18, Table 1]. There, the error when using QBX for
evaluating the double layer is two orders of magnitudes larger than for the single layer.

5.2. Comparison to direct QBX. We believe that the main benefit of using
AQBX rather than a direct QBX implementation is that the parameter choice is
greatly simplified; given an expansion distance r and a tolerance ε, the upsampling
rate κ and expansion order p are set on the fly as needed at each expansion center. A
second benefit is that setting κ and p on the fly can save some work, compared to using
fixed values everywhere. In an attempt to quantify this, we now introduce a measure
of the work (W ) needed to form a local expansion, in terms of source evaluations per
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Table 2
Results for varying r/h and tolerance ε = 10−10, computed in the same way as in Table 1.

Dist. Eval. error Exp. order p Upsamp. rate κ Work W Speedup (avg)
r/h

∥∥up − u∥∥∞ avg (opt) avg (opt) avg (opt) WQBX/WAQBX

0.10 1.7 · 10−10 8.0 ( 6) 4.1 ( 7) 32.8 ( 42) 1.3
0.25 2.2 · 10−10 10.3 ( 9) 2.3 ( 3) 23.2 ( 27) 1.2
0.50 6.2 · 10−9 13.8 ( 12) 1.7 ( 2) 23.0 ( 24) 1.0
0.75 5.4 · 10−10 17.7 ( 20) 1.5 ( 2) 27.1 ( 40) 1.5
1.00 1.1 · 10−9 22.0 ( 30) 1.8 ( 2) 40.3 ( 60) 1.5

original source point. If direct QBX is used with order p and a fixed upsampling rate
κ, then the work is given by

WQBX = pκ.(94)

If AQBX is used to compute p coefficients, with upsampling rate κm used to evaluate
the mth coefficient, then the work is given by

WAQBX =

p∑
m=1

κm.(95)

As a comparison, in Tables 1 and 2 we measure the work when computing all
expansion coefficients in our reference problem using AQBX, and compare that to
the work needed if p and κ are fixed everywhere to the minimum values required to
achieve the same accuracy as AQBX. These fixed values are tuned by hand to the
optimal values for this specific problems, but our algorithm still gives a slight speedup
in our definition of work. More importantly, our algorithm is in most cases able to
keep the error at the desired order of magnitude without any manual intervention.
Hand-tuning parameters is, on the other hand, strictly unfeasible in real applications,
and will generally result in an unnecessarily conservative choice of parameters.

Our measure of work does not take into account the extra effort needed to evaluate
the estimate of the AQBX scheme. The reported speedup should therefore be viewed
as an upper limit compared to the optimal parameter set, and as an indicator that
automatic parameter selection does not necessarily have to be more expensive than
using fixed parameters. To minimize the overhead of the scheme one can evaluate the
error estimates (68) and (87) recursively, and the multiple levels of upsampling can
for each panel be computed and reused as needed using a caching algorithm.

5.3. Source points close to the boundary. In order to push the limits of
the algorithm, we run a sequence of successively harder test cases. In each case, the
Dirichlet boundary condition is given by the potential from a source point that lies at
a distance d from the boundary, with d becoming successively smaller. Geometry and
results are shown in Figure 10. Setting the AQBX tolerance to 10−12, which is the
lowest that we can achieve, we see that the algorithm starts losing accuracy once the
source point is within a distance d = h from the boundary. Meanwhile, the error when
using direct quadrature, measured away from the boundary, does not start growing
until d = h/2.

The computation of the QBX coefficients relies on upsampling the density σ on
each panel using polynomial interpolation. If the density is not well represented by
its interpolant, then that will limit the accuracy of the QBX coefficients. One way of
approximating the accuracy of this interpolation is by considering the relative magni-
tude of the highest-order coefficient in the Legendre expansion (69) of the density on
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Fig. 10. Results when using the same discretization as in previous cases (200 panels, k =
2/h = 44.36), but with Dirichlet boundary conditions given by a point source at a distance d from
the boundary. We run 20 different cases, with the point source in each case given by one of the blue
dots in the left graphic. The source strength is for each case normalized such that ‖u‖∞ = 1 on ∂Ω.
AQBX is evaluated using a tolerance of 10−12. The direct error is the maximum relative error in
the solution when evaluated using direct quadrature on a circle of radius 2 (the outer radius of the
starfish is 1.3). The upsampling error estimate is the maximum of |σ̂15|/‖σ‖∞ over all panels.

each panel, |σ̂15|/‖σ‖∞. We take the maximum of this measure over all panels, and
denote it the “upsampling error estimate,” shown in Figure 10. While not a strictly
defined error measure, this quantity gives us some indication of how well the density is
resolved on the grid. It is clear from the figure that this error estimate starts growing
for source points closer than 3h from the boundary. Additionally, it seems that the
AQBX error grows at the same rate for d ≤ h, though we cannot say for certain that
this is the mechanism governing the AQBX error.

The results for this particular test case are encouraging, since AQBX does not ex-
hibit any adverse behavior due to the nearby singularities. Instead, the error increase
appears to be due to a lack of resolution.

5.4. Solving the integral equation. The above tests indicate that AQBX
works well for evaluating layer potentials, both close to and on the boundary. Since the
method is accurate on the boundary, it can also be used to solve the underlying integral
equation (2). AQBX is then used to evaluate the left-hand side of the discretized
integral equation (i.e., the matrix-vector product), and a solution is found iteratively
using GMRES [25]. The details of this are for direct QBX discussed to some extent
in [18]. There, they recommend that the principal value integral of the double layer is
computed using an average of QBX expansions on both sides of the boundary. This
was further studied in [23], where they found that two-sided expansions had better
convergence properties. We follow this recommendation here.

Table 3 shows the results when solving our test problem for a range of tolerances.
We find that the tolerance set for the GMRES iterations is matched by both the
error in the solution u and the smoothness of the density σ. However, we find that
the AQBX tolerance must be set two orders of magnitude smaller than the GMRES
tolerance, otherwise GMRES stagnates. We believe that this can partly be explained
by the fact that AQBX does not strictly satisfy its given tolerance. Though beyond
the scope of the present paper, it would be interesting to further study the interplay
between the tolerances of AQBX and GMRES. In particular, we believe that AQBX
could be successfully combined with the inexact GMRES method [26], which is de-
signed to work with a matrix-vector product that has been deliberately made inexact.

6. Conclusions. We have in this paper formulated a scheme for AQBX, which
allows for the evaluation of singular and nearly singular layer potential integrals on a
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Table 3
Results when solving the problem of Figure 6 using AQBX, with 200 panels. The iteration

count is the number of GMRES iterations needed to converge, and the reference value is the count
when using the method of [14]. The error in the solution is measured on a circle of radius 2, and
the upsampling error estimate is reported as the maximum over all panels.

GMRES tol. AQBX tol. Iter. count Rel. error Upsamp. err. est.

εGMRES εAQBX AQBX (ref)
‖up−u‖∞
‖u‖∞

max
|σ̂15|
‖σ‖∞

10−2 10−4 5 ( 5) 9.0 · 10−03 7.1 · 10−03

10−4 10−6 11 ( 11) 7.1 · 10−05 2.7 · 10−05

10−6 10−8 17 ( 17) 5.6 · 10−07 3.5 · 10−07

10−8 10−10 22 ( 22) 9.0 · 10−09 4.6 · 10−09

10−10 10−12 28 ( 28) 6.4 · 10−11 7.8 · 10−11

10−12 10−14 34 ( 33) 3.9 · 10−13 7.9 · 10−13

curve discretized using composite Gauss–Legendre quadrature. The scheme automat-
ically sets parameters in order to satisfy a given tolerance. This is a simplification
compared to the original QBX scheme, which has a large parameter space. Given a
target tolerance, the only free parameter here is the expansion radius r. Since the
remaining parameters are set on the fly, varying r will mainly affect the speed of
the algorithm. The optimal value for r with respect to speed will be implementation
dependent, though values of W in Table 2 suggest that r/h in the range 0.25–0.50 is
a good choice.

The key component of our scheme is the ability to accurately estimate the magni-
tude of the quadrature errors in the QBX coefficients. To do this we have built on the
results of [2], where such estimates were reported for a flat panel. We have extended
these to curved panels by taking into account the mapping between a flat panel and
a curved panel. This mapping can be locally constructed using only the locations of
the quadrature nodes on each panel, and therefore requires no additional analytical
information. A side benefit of our estimates is that the nearly singular quadrature
error of the underlying layer potential can be accurately estimated, which provides an
excellent criterion for when to activate special quadrature also when other methods
are used [16, 4]. This could also prove useful for QBX schemes where the expansion
is formed by multiple layer potential evaluations in a neighborhood of the expansion
center [3, 23].

The focus on target accuracy is, in our experience, uncommon in the context
of singular and nearly singular quadrature. We do, however, believe that this is
important if integral equation methods are to be used in large-scale simulations, where
the focus is on achieving a target accuracy at the lowest possible computational cost.

While several excellent special quadrature methods exist in 2D, methods in 3D
have not yet reached the same maturity. The QBX method has been successfully used
on simple geometries in 3D [1], while development for more general use is ongoing. If
accurate parameter selection is important in 2D, it is absolutely essential in 3D, as
costs are higher and the impact of suboptimal parameter choices more severe. The
principles of the present 2 dimensional scheme can be extended to 3D. Estimates for
the coefficient errors in 3D were developed in [2] for the special case of spheroidal
surfaces. Developing estimates for general surfaces in 3D is a topic of ongoing work,
and results will be reported at a later date.

Acknowledgment. The authors wish to thank Prof. Johan Helsing for provid-
ing an implementation of the singular integration scheme of [14].
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