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A fast integral equation method for solid particles in viscous flow
using quadrature by expansion
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KTH Royal Institute of Technology, 100 44 Stockholm, Sweden

Abstract

Boundary integral methods are advantageous when simulating viscous flow around rigid
particles, due to the reduction in number of unknowns and straightforward handling
of the geometry. In this work we present a fast and accurate framework for simulating
spheroids in periodic Stokes flow, which is based on the completed double layer boundary
integral formulation. The framework implements a new method known as quadrature
by expansion (QBX), which uses surrogate local expansions of the layer potential to
evaluate it to very high accuracy both on and off the particle surfaces. This quadrature
method is accelerated through a newly developed precomputation scheme. The long
range interactions are computed using the spectral Ewald (SE) fast summation method,
which after integration with QBX allows the resulting system to be solved in M logM
time, where M is the number of particles. This framework is suitable for simulations of
large particle systems, and can be used for studying e.g. porous media models.

Keywords: Viscous flow, Stokes equations, Boundary integral methods, Quadrature
by expansion, Fast Ewald summation

1. Introduction

Fluid flows involving microscopic, rigid particles are common both in nature and in
industrial processes. The macroscopic properties of such systems are often determined
by the particle interactions happening on the smallest scale of the flow. Examples of such
systems can be found in sedimenting suspensions [17] and porous media modeling [13].
To fully understand the interactions between particles, and the effect those interactions
have on the fluid flow, numerical simulation is a valuable tool. Stokes equations are often
valid in this context, due to the small particle size and low fluid velocity. For problems
governed by Stokes equations it is possible to use boundary integral methods, where the
solution is represented as a layer potential from the boundaries of the domain (in this
case the particle surfaces). Since the problem then is formulated as a boundary integral
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equation (BIE) on the union of the particle surfaces, the dimension of the domain which
has to be discretized is reduced from R3 to R2, significantly reducing the number of
unknowns. This also removes the problem of combining a volume grid with moving
boundaries, which can be challenging. However, boundary integral methods come with
a set of challenges of their own, two of which can be considered major.

The first major challenge of boundary integral methods is that the resulting linear
system after e.g. a Nyström discretization is dense, such that the cost of one left hand
side evaluation is O(N2), where N is the number of unknowns. This puts a severe limit
on the size of the systems that can be considered, even if a rapidly converging interative
method is used. This can be overcome by evaluating the layer potential using a fast
method, such as the fast multipole method (FMM) [16] or a fast Ewald summation
method [14, 24] (for periodic problems). These methods reduce the cost of one left
hand side evaluation to O(N) and O(N logN), respectively, thereby making boundary
integral methods suitable for large-scale computations.

The second major challenge of boundary integral methods is that one needs accurate
quadrature of singular and nearly singular integrals when evaluating the layer potential.
Developing such methods which are accurate, fast and work for arbitrary geometries is
a topic of current research, particularly for the problem of nearly singular quadrature
in three dimensions. In two dimensions there are efficient methods for nearly singular
quadrature which gain a lot of their power from the complex variable formulation [18, 6].
In three dimensions the situation appears less resolved, though several different methods
have been successfully used in practical applications [9, 10, 37, 29, 34, 38]. A common
feature of many of these methods is however that they are highly target specific, meaning
that the cost grows rapidly if there are many nearly singular integrals to be evaluated.

Quadrature by expansion (QBX) [20, 7] is a fairly new method for numerical inte-
gration of singular and nearly singular integrals. The method is built around evaluating
layer potentials through local expansions, and comes equipped with a solid convergence
theory [15]. It was originally presented for the Helmholtz kernel in two dimensions,
but the principles of the method generalize directly both to three dimensions and other
kernels. A promising feature of QBX is that it is possible to combine it with an FMM,
thereby creating a fully O(N) method that is able to accurately evaluate the potential
everywhere.

In this paper we extend the QBX framework to deal with the Stokes double layer
potential in three dimensions, and combine it with the fast Ewald summation method
presented in [2]. The result is a robust and scalable framework for computing Stokes
flow around periodic systems of rigid, spheroidal particles. To limit the scope of the
present paper, we restrict our attention to stationary particles. The method could easily
be extended to dynamic problems — such as sedimentation — by coupling it to an ODE
solver, as was done in [2].

The structure of this paper is as follows: In section 2 we state the necessary boundary
integral formulation for Stokes flow around rigid particles. In section 3 we introduce
QBX and discuss errors and parameter selection. In section 4 we show how QBX can be
accelerated for our problem, leading to a computationally feasible method. In section 5
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we briefly touch on the subject of Ewald summation, and how to combine it with QBX.
Finally, in section 6 we present selected numerical results, which we draw both from
validation tests and from an example application. We also include an appendix (A),
which covers the computational details of the acceleration scheme presented in section
4.

2. Formulation

Our application of interest is that of rigid particles in a Newtonian fluid. The particles
are assumed small enough that the Reynolds number is close to zero, such that we can
model the flow as being Stokes flow, governed by the Stokes equations,

−∇P + µ∆u+ f = 0,

∇ · u = 0.
(1)

We here limit ourselves to spheroidal particles with semi-axes a and c, and assume µ = 1.
The surface of such a particle, oriented along the z coordinate axis, can in Cartesian
coordinates be described as

x2 + y2

a2
+
z2

c2
= 1. (2)

If parametrized in the spherical coordinates θ ∈ [0, π] and ϕ ∈ [0, 2π), the same surface
is given by

x = a sin(θ) cos(ϕ),

y = a sin(θ) sin(ϕ),

z = c cos(θ).

(3)

The particles can be classified into three distinct subgroups: prolate (a < c), spherical
(a = c), and oblate (a > c).

2.1. Boundary integral formulation

We are considering Stokes flow as described by the Stokes equations (1), which by
virtue of being a set of linear partial differential equations with constant coefficients have
solutions that can be represented using boundary integrals. For these representations,
the essential Green’s functions are the stokeslet S, the stresslet T and the rotlet R1.

Sij(x,y) =
δij
r

+
rirj
r3

, (4)

Tijk(x,y) = −6
rirjrk
r5

, (5)

Rij(x,y) = εijk
rk
r3
, (6)

1Throughout this paper we use the Einstein convention that an index appearing twice in an expression
implies a summation over the set {1, 2, 3}, except for when there is a

∑
explicitly defining the index.
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where r = x− y and r = |r|.
To compute the flow associated with a rigid particle in a viscous fluid, we use the

completed boundary integral representation of Power & Miranda [27], where the flow in
the domain is expressed as a double layer potential D plus a completion flow V and a
background flow ubg,

u(x) = D [Γ, q] (x) + V (x) + ubg(x). (7)

The double layer potential is the flow associated with a double layer density q, defined
on the particle surface Γ. It is computed by integrating q over Γ together with the
stresslet singularity T and the outward unit normal n,

Di [Γ, q] (x) =

∫
Γ
Tijk(x,y)qj(y)nk(y)dSy. (8)

The integral in (8) is singular for x ∈ Γ. It is then taken as the principal value integral,
which is weakly singular (assuming Γ Lyapunov smooth). Letting x approach the surface
from either the interior or exterior domain, there is a jump in the double layer potential,

lim
ε→0

D [Γ, q] (x± εn) = ∓4πq(x) + D [Γ, q] (x) , x ∈ Γ. (9)

The completion flow V is added to the formulation due to the double layer potential’s
inability to represent a net force f and torque t on the particle [27]. For a rigid particle,
a suitable completion flow is that generated by a stokeslet singularity S of magnitude
f/8πµ and a rotlet singularity R of magnitude t/8πµ, both located at the particle center
xc,

Vi (x) =
1

8πµ
(Sij(x,xc)fj +Rij(x,xc)tj) . (10)

For a particle undergoing rigid body motion with translational velocity U and rotational
velocity Ω, we set a no-slip boundary condition,

u(x) = U + Ω× (x− xc). (11)

Letting x in our flow field representation (7) go to the surface of the particle from
the exterior, we get a diagonal term from (9). We then enforce the no-slip boundary
condition (11) on the surface. This results in a BIE of the second kind in the density q,

−4πq(x) + D [Γ, q] (x) + V (x) + ubg(x) = U + Ω× (x− xc). (12)

The fact that (12) is second kind with a compact integral operator is the main benefit
of using a double layer formulation. After discretization using a quadrature rule and the
Nyström method, the corresponding linear system can be said to be well conditioned in
two senses; one is that the condition number is bounded (and usually very low), the other
is that the condition number stays constant under grid refinement (this is in contrast
to single layer formulations, where the condition number increases under refinement).
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These properties make the system suitable for iterative solution using the generalized
minimum residual method [31] (GMRES), which typically converges rapidly.

The equation system in (12) needs to be closed by specifying either the rigid body
motion (U ,Ω) or the completion flow V . This corresponds to using two different for-
mulations: the resistance problem formulation or the mobility problem formulation.

2.1.1. The resistance problem

When the rigid body motion (U ,Ω) of the particle is known, the problem is to find
the resulting force f and torque t exerted by the fluid on the particle. These can be
related to the double layer density q through the formulation by Power & Miranda [27],

f(q) =

∫
Γ
q(y)dSy, (13)

t(q) =

∫
Γ
q(y)× (y − xc)dSy, (14)

such that the completion flow is a functional of q,

Vi (x) = Vi[Γ, q](x) =
1

8πµ
(Sij(x,xc)fj(q) +Rij(x,xc)tj(q)) . (15)

2.1.2. The mobility problem

When the external forcing (f , t) on the particle is known, the problem is to find
the rigid body motion (U ,Ω) of the particle. Using the formulation available in e.g.
Pozrikidis [28], the rigid body motion vectors can be computed as functionals of q,

V (q) = −4π

SΓ

∫
Γ
q(y)dSy, (16)

Ω(q) = −4π
3∑

n=1

ω(n)

An

(
ω(n) ·

∫
Γ
(y − xc)× q(y)dSy

)
, (17)

where SΓ is the surface area of Γ and

An =

∫
Γ

[
ω(n) × (y − xc)

]
·
[
ω(n) × (y − xc)

]
dSy. (18)

The vectors ω(n), n = 1, 2, 3, are independent unit vectors satisfying

1√
AnAm

∫
Γ

[
ω(m) × (y − xc)

]
·
[
ω(n) × (y − xc)

]
dSy = δmn. (19)

2.2. Particle systems

For a system of M particles, the linearity of the Stokes equations allows us to express
the velocity field as a superposition of the fields from the individual particles,

u(x) =

M∑
α=1

(Dα(x) + Vα(x)) + ubg(vx), (20)
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where Γα is the surface of particle α,

Dα(x) = D [Γα, q] (x) , (21)

and (Vα,Uα,Ωα) are defined either as in the resistance formulation or the mobility
formulation.

Evaluating (20) and enforcing the no-slip boundary condition (11) on the surface of
each particle gives the boundary integral equation for a system of particles,

−4πq(x) +
M∑
α=1

(Dα(x) + Vα(x)) + ubg(x) = Uβ + Ωβ × (x− xβc ),

x ∈ Γβ, β = 1, . . . ,M.

(22)

2.3. Discrete formulation

To solve the (single particle) BIE (12), we first need a way of numerically evaluating
integrals over the particle surface, which we denote

I[f ] =

∫
Γ
f(y)dSy. (23)

This we do using a quadrature rule QN , which defines a set of N nodes xi and weights
wi on Γ, such that

I[f ] ≈ QN [f ] =
N∑
i=1

f(yi)wi. (24)

The details of the quadrature used will be discussed further in section 3. We denote by
the superscript h a quantity computed using QN , e.g.

Dhi [Γ, q] (x) = QN [Tijk(x, ·)qj(·)nk(·)]. (25)

Applying the Nyström method, where the integral equation is enforced at the quadrature
nodes, the BIE for the single-particle system (12) is approximated by the 3N×3N linear
system in the density values q(xi),

−4πq(xi) + Dh [Γ, q] (xi) + V (xi) = U + Ω× (xi − xc),
i = 1, . . . , N,

(26)

where either V = Vh or U = Uh and Ω = Ωh, depending on if the problem is a
resistance problem or a mobility problem.

The matrix corresponding to the linear system (26) is dense, so the cost of applying
a direct solution method to it would be O(N3). However, when solving with GMRES
the number of iterations required to reach a certain tolerance is largely independent
of the discretization. The cost is then O(N2), with a constant that depends on the
problem geometry. This is acceptable for a single particle, since the solution q usually
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can be resolved with a limited number of surface nodes. For a problem with multiple
particles, however, the corresponding linear system (derived from (22)) is 3MN × 3MN
and dense. The cost then grows quadratically with the number of particles, which
severely limits the size of the problem that can be considered. The remedy for this is
to use a fast method, which exploits the structure of the problem to evaluate the left
hand side of the problem (also known as the matrix-vector product, or matvec) in less
than quadratic time. Common fast methods are the FMM and, for periodic problems,
fast Ewald summation. The respective complexities for these two methods are O(M)
and O(M logM) as the number of particles is increased. We have here used fast Ewald
summation, which will be further discussed in section 5.

3. Quadrature

To derive the linear system (26) corresponding to the BIE (12), we needed a quadra-
ture method QN (24) for evaluating the double layer potential D (8). We will in this
section describe such a method, which is able to accurately resolve D also when the
integral is nearly singular or singular.

3.1. Spheroidal grid

When performing quadrature on a spheroidal particle, it is natural to use the parametrized
description (3) in (θ, ϕ) and to discretize it using an nθ × nϕ grid in those coordinates,
with the grid aspect ratio given by

nϕ
nθ

=
a

c
. (27)

This gives us a total of N = nθnϕ quadrature points on the surface. We let (θi, λ
θ
i ),

i ∈ {1 . . . nθ}, be the nodes and quadrature weights of an nθ-point Gauss-Legendre
quadrature rule on the interval [0, π], and (ϕj , λ

ϕ
j ), j ∈ {1 . . . nϕ}, be the nodes and

quadrature weights of the trapezoidal rule on the interval [0, 2π). This gives us the
quadrature rule

Qnθnϕ
[f ] =

nθ∑
i=1

nϕ∑
j=1

f(y(θ, ϕ))W (θi, ϕj)λ
θ
iλ
ϕ
j (28)

where W (θ, ϕ) is the area element. For ease of notation we can simplify this expression
by letting one index cover all quadrature points and introducing yi and wi such that

QN [f ] =
N∑
i=1

f(yi)wi = Qnθnϕ
[f ]. (29)

We denote this grid and the accompanying quadrature rule the spheroidal grid, and will
refer to the quadrature rule as the direct quadrature.

The direct quadrature rule defined in (28) allows us to approximate integrals over
the surface with spectral accuracy for smooth and well-resolved integrands, and works
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(a) Stokes flow around a single translating
spheroid, exact solution from [12].

(b) Error when evaluating double layer potential
from spheroid using direct quadrature. The scale
is logarithmic, indicating an exponential growth
rate as x→ Γ.

Figure 1: Example of error due to nearly singular integration (b), when evaluating flow due to a single
particle (a).

well for evaluating the double layer potential (8) when the target point x is far enough
away from the surface Γ. However, when x is on Γ the integral is singular and can not be
computed using a quadrature rule for smooth functions. There is also a difficulty when
x lies in the domain, but is close to Γ. The singularity in the stresslet then causes the
integral kernel to be sharply peaked, and trying to evaluate it using a direct quadrature
rule gives an error which grows exponentially as x approaches Γ (see Figure 1 and results
in [3]). We refer to this as the integral being nearly singular.

The singular case (x ∈ Γ) can for the double layer potential be evaluated using a sin-
gularity subtraction method, which gives third order accuracy at virtually no increased
cost [2]. For higher order accuracy in the singular case, and for evaluating the nearly
singular case, specialized quadrature methods are required.

In what follows of this section we will first give a brief introduction to an existing
quadrature method for singular and nearly singular layer potentials that is based on
local expansions. We will then show how this method can be used to evaluate the
Stokes double layer potential. Lastly, we will show how this method in our case can be
accelerated by geometric considerations.

3.2. Quadrature by expansion

Quadrature by expansion (QBX) is a new quadrature scheme first introduced for the
Helmholtz equation in two dimensions by Klöckner et al. [20]. The method is based on
the observation that a direct quadrature rule applied to a layer potential is inaccurate
when evaluated close to or on the surface, but well resolved when sufficiently far away,
as illustrated in Figure 1. Since the layer potential is a smooth function away from the
boundary, we can pick any point c in the domain and create a local expansion of the
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c

Γy

x

r

Figure 2: Local expansion and domain of convergence.

potential about that point. Picking that point in the well-resolved part of the domain,
we can compute the coefficients of the expansion using our direct quadrature rule. The
domain of convergence for the local expansion is the ball of radius r,

r = min
y∈Γ
|c− y|, (30)

centered on c, and so the expansion can be used to accurately evaluate the potential
close to the surface and at the point where the ball touches the surface (see Figure 2 for
an example geometry). This is the essential idea of QBX. For further reading regarding
the convergence and evaluation of these local expansions, we refer to Epstein et al. [15]
and Barnett [7].

In three dimensions, a good starting point for the construction of local expansions
for layer potentials is the expansion of the Green’s function for the Laplace equation,
called the Laplace expansion,

1

|x− y|
=
∞∑
l=0

4π

2l + 1

l∑
m=−l

rlxY
−m
l (θx, ϕx)

1

rl+1
y

Y m
l (θy, ϕy), (31)

where Y m
l is the spherical harmonics function of degree l and order m, and (rx, θx, ϕx)

and (ry, θy, ϕy) are the coordinates of x and y in a spherical coordinate system centered
at c. This expansion gives us the separation of source (y) and target (x) that is necessary
for the method. As a first application, we will consider a general form of the double
layer potential of the Laplace equation, which we henceforth will refer to as the dipole
potential. For a smooth vector density ρ defined on the surface Γ, we define it as

L [Γ,ρ] (x) :=

∫
Γ
ρ · ∇y

1

|x− y|
dSy. (32)

Inserting the expansion (31) into (32) and moving the terms related to the target point
x out of the integration, we get

L [Γ,ρ] (x) =
∞∑
l=0

l∑
m=−l

rlxY
−m
l (θx, ϕx)zlm, (33)
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where zlm are the local expansion coefficients of the potential,

zlm =
4π

2l + 1

∫
Γ
ρ · ∇ 1

rl+1
y

Y m
l (θy, ϕy)dSy. (34)

Once the expansion coefficients zlm are known, they can be used to evaluate the potential
at any target point x in the domain of convergence. At this stage we wish to highlight
two things: (i) We have so far made no approximations, evaluating the potential through
expressions (33) and (34) is still exact. The sum in l will need to be truncated, and we
will discuss the truncation error that it introduces in section 3.5. (ii) The integrand in
(34) contains no singularity, and can be evaluated using a direct quadrature rule. The
quadrature errors related to this direct quadrature will also be discussed in section 3.5.

3.3. QBX for the stresslet

To evaluate the Stokes double layer potential (8) using QBX, we need to be able to
expand its kernel in a way that separates source and target, just as we could for the
dipole potential. One way of doing this is to express the double layer potential in terms
of the dipole potential, for which we already have the expansion (33). Here we use the
result by Tornberg and Greengard [35], which was developed with the purpose of using
a harmonic FMM to compute the flow due to a collection of stokeslets and stresslets.
Denoting by F the kernel of the dipole potential,

Fi(x,y) = ∇y
1

r
=
ri
r3
, r = x− y, (35)

the kernel of the double layer potential can be expressed as

Tijk(x,y)nk =

(
(xj − yj)

∂

∂xi
− δij

)
Fk(x,y)nk

+

(
(xk − yk)

∂

∂xi
− δik

)
Fj(x,y)nk.

(36)

Rearranging terms, the integrand of (8) can then be written

Tijk(x,y)qjnk =

(
xj

∂

∂xi
− δij

)
Fk(x,y)(qjnk + njqk)

− ∂

∂xi
Fj(x,y)(ykqknj + yknkqj).

(37)

Consequently, the double layer potential can be expressed in terms of dipole potentials
as

Di [Γ, q] (x) =

(
xj

∂

∂xi
− δij

)
L [Γ, qjn+ njq] (x)

− ∂

∂xi
L [Γ, ykqkn+ yknkq] (x)

(38)
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With this result we can create an expansion of the double layer potential by creating
four expansions of the dipole potential with four different densities (including the implicit
summation over j). This means that the three vector components of the double layer
potential are computed using four scalar expansions.The expansion coefficients that need
to be computed for a given expansion center c are then

zjlm =

∫
Γ
(qjn+ njq) · ∇ 1

rl+1
y

Y m
l (θy, ϕy)dSy, j = 1, 2, 3,

z4
lm =

∫
Γ
(ykqkn+ yknkq) · ∇ 1

rl+1
y

Y m
l (θy, ϕy)dSy.

(39)

The spherical harmonics are conjugate symmetric in m, Y −ml (θ, ϕ) = Y m
l (θ, ϕ)∗, and

since the density q is real the same conjugate symmetry holds for the expansion coeffi-
cients,

zjl,−m =
(
zjlm

)∗
, j = 1, . . . , 4. (40)

Hence, we only need to compute the coefficients for 0 ≤ m ≤ l. Truncating the expansion
at some p = lmax, the total number of coefficients that we need to compute for each
component j is

Np =
p2 + 3p+ 2

2
. (41)

3.4. Numerical scheme

To solve the discrete BIE for a single particle (26), we need to evaluate the double
layer potential at the quadrature points x1, . . . ,xN . Each local expansion of the potential
is valid at a single point on the surface, where the ball of convergence touches the surface,
so we need N expansion centers c1, . . . , cN located at a distance r normally from the
quadrature points,

ci = xi + rni. (42)

The same expansions are used to evaluate the potential on the surface and in the domain.
A natural choice of expansion radius is then

r =
dε
2
, (43)

where dε has been determined as the minimum distance from the surface at which the
direct quadrature can be used for a given error tolerance ε. For target points x such that
miny∈Γ |x− y| < dε, the potential is then evaluated using the closest expansion center.
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3.5. Error analysis

Here we give a sketch of an error analysis for the dipole potential, with the argu-
ment that it carries over to the double layer potential, as the latter is constructed as a
combination of the former. For more in-depth discussions we refer to [15] and [3].

When evaluating the dipole potential (32) using QBX, we truncate the expansion
(33) to some order p and use our direct Gauss-Legendre/trapezoidal quadrature rule
(28) to approximate the coefficients zlm (34). Denoting the approximate coefficients z̃lm,
the error is

E =

∣∣∣∣∣L [Γ,ρ] (x)−
p∑
l=0

l∑
m=−l

rlxY
−m
l (θx, ϕx)z̃lm

∣∣∣∣∣ . (44)

Adding and subtracting the exact coefficients zlm to the expansion, the error can be split
into two components,

E ≤ ET + EQ, (45)

where ET is the truncation error due to using a finite number of terms in the expansion,

ET =

∣∣∣∣∣L [Γ,ρ] (x)−
p∑
l=0

l∑
m=−l

rlxY
−m
l (θx, ϕx)zlm

∣∣∣∣∣ , (46)

and EQ is the quadrature error due to using a discrete quadrature rule,

EQ =

∣∣∣∣∣
p∑
l=0

l∑
m=−l

rlxY
−m
l (θx, ϕx)(z̃lm − zlm)

∣∣∣∣∣ . (47)

From the results in [15] we have that the truncation error can be expected to behave as

ET = O(rp+1), (48)

assuming that the lengths have been normalized such that r < 1. In [3] an estimate
was derived for the QBX quadrature error, when considering the Laplace single layer
potential on a spheroid. Simplifying those results, we can expect that the quadrature
error should behave approximately as

EQ = O
((
β
r

h

)p
e−αr/h

)
, (49)

for some α, β > 0 and h a measure of the grid size; for the spheroidal grid we define

h := 2πa/nϕ. (50)

The constants can be expected to take values such that βr/h > 1. Putting the two
expression together, we see that the total error has one component that that decays
with p and one component that grows with p,

E = O(rp+1) +O
((
β
r

h

)p
e−αr/h

)
. (51)
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Figure 3

This means that if we fix r and h for a given problem, then there exists an optimal value
for p that minimizes the error. If we instead fix the relation r/h at some constant value,
e.g. r = 3h, then the quadrature error stays constant (EQ = CQ) such that for a given p

E = O(hp+1) + CQ. (52)

The scheme can then be viewed as having order of accuracy (p+1) under grid refinement,
up to the point where the truncation and quadrature errors are equal. After that we have
to refine the grid (while maintaining a constant r) to get any additional improvements.

In practice we want to be able to get arbitrarily high accuracy out of QBX, without
having to introduce more degrees of freedom. To overcome the problem of the quadrature
error growing with p, we therefore upsample the surface density to a factor κ finer grid
before computing the coefficients. The fine grid is of the same type as the original, but
with κnθ×κnϕ points, and the density on the fine grid is computed using trigonometric
interpolation and barycentric Lagrange interpolation [8]. This allows us to write the
total error as

E = O(rp+1) +O
((
β
κr

h

)p
e−ακr/h

)
. (53)

The truncation and quadrature errors can then be controlled separately, since the expo-
nential term will rapidly reduce the quadrature error when κ is increased.

To illustrate the effects of the parameters p and κ, we solve the mobility problem
for a single oblate spheroid (a/c = 2) with a 20 × 40 grid using r/h = 3/2 and a range
of p and κ. Measuring the L2 norm of the error in the density compared to a reference
solution, we can see in Figure 3a that the error decreases exponentially in p until it hits
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a floor given by the resolution of the underlying grid, but only for κ large enough. If κ is
taken too small, the error increases almost exponentially in p after reaching a minimum.
Finding the optimal κ for a given p is not trivial, and picking κ larger than necessary is
costly, since it adds a factor κ2 to the computational complexity.

3.6. Two-sided expansions

When evaluating the singular double layer potential on a surface, we want the princi-
pal value integral. However, what we get when evaluating it using QBX is the one-sided
limit from the side of the expansion center, which we denote D+ or D− depending on
side,

D±[Γ, q](x) = lim
ε→0

D [Γ, q] (x± εn) . (54)

The relation between the principal value and the one-sided limit is known through the
jump relation (9), which can be used together with the QBX result to recover the
principal value. However, and this was originally noted in [20], it turns out that the
spectrum of the linear system better approximates that of the original operator if we
compute the principal value through the relation

D =
D+ + D−

2
. (55)

To do this in practice, we need to put one expansion center on each side of the target
point on the surface and take the average potential of the two to get the principal
value, as illustrated in Figure 3b. This seemingly doubles the amount of work needed,
but through the acceleration scheme of section 4 that extra cost is hidden from the
computations.

3.7. Parameter selection

For a given geometry, grid resolution h and tolerance ε, an empirical process for
selecting the QBX parameters p, κ and r is as follows:

1. Set r = dε/2, such that the error from the direct quadrature will be less than ε
when the evaluation point is at least a distance dε from Γ.

2. Set p large enough such that the truncation error ET from the QBX expansion is
smaller than ε for points closer than dε from Γ.

3. Set κ large enough to match p, such that the quadrature error EQ is kept below ε.

Figure 4 shows an example where the QBX parameters have been tuned for high accu-
racy.
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(a) Error when using direct quadrature, punc-
tured in disc around an expansion center.

(b) Error when QBX is used in top half plane.
Solid black line marks threshold dε.

Figure 4: Relative error in solution around prolate spheroid, (a, c) = (1, 2), compared to exact solution
from [12]. Grid is 60× 30, QBX parameters are p = 40, k = 10, r/h = 2. Note the error pattern inside
the QBX area, which is due to an error in the solution, not the quadrature.

4. Acceleration of QBX on spheroidal grid

Evaluating the potential from one particle using the QBX scheme described in section
3 involves a lot of work. For a spheroidal grid with N points, a given upsampling factor
κ and expansion order p, we need to interpolate the density to a factor κ2 larger grid
and then compute O(p2) expansion coefficients at every expansion center. This puts
the cost for computing the potential from a particle on itself, the ”self-interaction”, at
O(κ2p2N2). One natural way of speeding up the process is to incorporate the QBX
scheme into an FMM, which hierarchically computes potentials using expansions of the
same kind as those used in QBX (the method was in fact conceived with this in mind).
This makes it possible to compute everything on the fly at a computational cost that is
linear in N (but still includes κ2p2). The required modifications to the FMM are however
nontrivial, and the only unified FMM/QBX method published to date (by Rachh et al.
[30]) is for two-dimensional problems.

Another way of achieving speedup is to precompute as much as possible of the work
associated with QBX, and then use precomputed values whenever possible. This comes
at a potentially large storage cost, and still has a computational complexity that is
quadratic in N , albeit with a significantly smaller leading constant. In this work we
have used precomputations in combination with a fast Ewald summation method, which
computes the long-range interactions between M particles in O(M logM) time (more
on this in section 5). This is feasible partly because the number N of grid points
required on a spheroid is limited, such that the overall computational cost scales like
O(M logM), and partly because the spheroidal geometry of the particles in our problem
significantly reduces the storage required for the precomputed values. We will in this
section outline the principles and main results of our precomputation strategy; the details
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of the implementation are available for reference in appendix A.

4.1. Self-interaction

When solving the boundary integral equation (12) on a single particle using the
spheroidal grid of section 3.1, we typically use the Nyström method to create a linear
system which we solve iteratively. We then have N grid points denoted x1, . . . ,xN on the
surface, and for every iteration we need to compute the self-interaction at those points.
With Q ∈ R3N containing {q(xi)}Ni=1, we can let Ri ∈ R3×3N be the map Q → u(xi)
using QBX, such that

u(xi) = RiQ. (56)

The matrix Ri then represents the resulting action after upsampling the density to a fine
grid, using the fine grid to compute the expansion coefficients at the expansion center ci,
and finally evaluating that expansion at xi. Precomputing all the matrices R1, . . . , RN
requires 3N × 3N memory storage, but once computed they allow the computation
of Q → u(xi) at all points xi at a the cost of a matrix-vector product, i.e. O(N2).
This means that the O(p2κ2) cost related to the QBX parameters — and ultimately
to the accuracy — only appears in the precomputation step. Once the Ri matrices are
computed the self-interaction evaluation has a fixed cost, independent of which QBX
parameters were used.

The memory cost of precomputing all the self interaction matrices can be reduced
by taking advantage of the fact that the spheroidal grid is rotationally symmetric about
the polar axis. This symmetry means that the matrices Ra and Rb related to two points
xa and xb on the same latitude (θa = θb) can be related as

Ra = TzRb(T
−1
z ⊗ P ), (57)

where Tz ∈ R3×3 represents a rotation about the polar axis of the particle, and P ∈
RN×N is a permutation matrix, i.e. a row permutation of the identity matrix that
represents a permutation of the point ordering. The symbol ⊗ denotes the Kronecker
product. As a consequence, it is enough to precompute matrices related to the nθ points
on the first longitude, and then use rotations and permutations to compute the potential
at all grid points with those matrices.

The savings in memory and precomputation time can be further increased by taking
advantage of the fact the spheroidal grid has a mirror symmetry about the equator. For
two points xb and xc on the same longitude (ϕb = ϕc) but different sides of the equator,
such that θb = π − θc, we can relate the matrices Rb and Rc as

Rb = TxRc(T
−1
x ⊗ F ), (58)

where Tx ∈ R3×3 represents a rotation that mirrors the points xb and xc into each other,
and F ∈ RN×N is a permutation matrix. Taking advantage of this mirror symmetry
allows a further reduction of the required number of precomputed matrices to nθ/2,
corresponding to the points marked in Figure 5a.

16



(a) Spheroidal grid with the nθ/2 first
points circled.

(b) Example of configuration where near-
singular quadrature is necessary.

Figure 5

4.2. Nearly singular evaluation

When particles are close to each other, such as in Figure 5b, we need to use QBX to
evaluate their interaction accurately, since at least some of the quadrature points on one
particle will be too close to the other particle for the direct quadrature to be accurate
without substantial refinement. To be able to evaluate the potential at arbitrary points
close to a particle using QBX, we need the expansion coefficients for the potential at all
the expansion centers in the domain outside the surface.

We let zj(ci) ∈ CNp , j ∈ {1 . . . 4}, denote the four vectors of Np (41) coefficients
each at a an expansion center ci, as defined in (39). Analogously to (56), the process
of upsampling the density and computing the expansion coefficients at all the expansion
coefficients can then by represented by a set of matrices M j

i ∈ CNp×3N , such that

zj(ci) = M j
iQ, i = 1, . . . , N,

j = 1, . . . , 4.
(59)

Using the same arguments of symmetry as above, we can relate these matrices by rota-
tional symmetry as

M j
a =

4∑
i=1

AijEM
i
b(T
−1
z ⊗ P ), (60)

and by mirror symmetry as

M j
b =

4∑
i=1

BijΘ
jM j

c (T−1
x ⊗ F ), (61)

where {Θ, E} ∈ RNp×Np are diagonal, and {A,B} ∈ R4×4 orthogonal. Just as for
the matrices Ri, it is therefore sufficient to precompute the matrices M j

i for the first
nθ/2 expansions points, since the remaining matrices can be reconstructed by symmetry
operations.
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The precomputation of the matrices M j
i hides the cost κ2 related to the upsampling

from the nearly singular evaluation, though the O(p2) expansion order cost still affects
the evaluation and storage cost. This is because it reflects the number of expansion
coefficients used, and we need all the coefficients to able to evaluate the expansion at
arbitrary target points. Only when precomputing for a specific target point, as in the
self-interaction, can we get rid of the p2 factor.

4.3. Storage complexity

Precomputing the density-to-coefficient matrices M j
i for a single expansion center ci

requires storage of 12NpN complex numbers, while the density-to-potential matrix Ri
related to a target point xi only requires storage of 9N real numbers. Considering a
spheroidal body, where N = nϕnθ, and taking both symmetries into account, the storage

required for computing all necessary M j
i is then 6Npnθ

2nϕ complex numbers, while the
storage required for all necessary Ri is 9

2nθ
2nϕ real numbers.

As an example, using a set of 50× 50 quadrature points and p = 15 requires approx-
imately 1.6 GB for the M j

i and 4.5 MB for the Ri, using double precision. The number
of expansion coefficients scales as Np = O(p2), so assuming nϕ ∝ nθ = n allows us to
write the scaling of these expressions as O(p2n3) and O(n3). Alternatively, introducing
a grid size h ∝ 1/n gives O(p2h−3) and O(h−3).

4.4. Summary of precomputation scheme

The precomputation scheme outlined above minimizes the cost for QBX when com-
puting it directly, as opposed to accelerating it by an FMM. For a given setup of particle
shape, quadrature grid and QBX parameters, we can precompute the matrices Ri and
M j
i , associated with self-interaction and nearly singular evaluation, and store them to

disk. The symmetries of the spheroidal grid allow us to do this at a manageable cost in
terms of memory. Once we have these precomputed values, we can load and use them
for simulations with a large number of particles that all have identical shape and grid.
The single set of precomputed values can then be used for all particles in the simulation,
since they will differ from each other only by a rigid body rotation.

For the self-interaction, the costs of upsampling and expansion order are hidden from
the evaluation step by the precomputations. We can therefore pick κ and p large enough
to make sure that that the accuracy in the evlauation of the double layer potential is
only limited by how well the density q is resolved on the underlying quadrature grid.
For the nearly singular evaluation the expansion order p still affects the computational
cost, so there is still a cost/accuracy tradeoff there. However, the upsampling factor κ is
hidden by the precomputations, so we can always make sure that we pick it large enough
to resolve integrands associated with large p.

5. Periodic systems and Ewald summation

To model an infinitely large particle system while minimizing the effects of a finite-
size computational domain, we use the common method of applying periodic boundary
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conditions. We then consider a system of M particles contained in a box of size L1 ×
L2×L3, which is periodically replicated in all three spatial directions. The velocity field
is then periodic,

uP (x) = uP (x+ τ ), (62)

where the superscript P denotes the periodicity and τ is a periodic shift,

τ = (p1L1, p2L2, p3L3), p ∈ Z3. (63)

The periodic velocity field is computed as a superposition of the field from all periodic
replications of all particles,

uP (x) =
M∑
α=1

[
DP [Γα, q](x) + VP,α(x)

]
, (64)

where DP is the periodic double layer potential,

DPi [Γ, q](x) =
∑
τ

∫
Γ
Tijk(x,y + τ )qj(y)nk(y)dSy, (65)

and VP,α is the periodic completion flow,

VP,αi (x) =
∑
τ

Vαi (x+ τ ). (66)

Computing uP by direct summation over all periodic images is not feasible since the
sums over τ in (65) and (66) decay slowly and depend on the order of summation.
Additionally, the convergence of the sum over stokeslets depends on the assumption
that there is a pressure gradient maintaining the force balance. Here we compute the
sums using a fast Ewald summation method [2], which corresponds to using a spherical
summation order. The stresslet T in (65) is then decomposed into two parts,

T (x,y) = T (R)(x,y, ξ) + T (F )(x,y, ξ), (67)

where T (R) is short-ranged and singular, while T (F ) is long-ranged and smooth. The
Ewald parameter ξ determines how short-ranged and smooth the two respective parts
are. Away from the source y the short-ranged part T (R) decays exponentially,

T (R)(x,y, ξ) ∼ e−ξ2|x−y|2 . (68)

This makes it possible to introduce a truncation radius rc and only consider near-
neighbor interactions within that radius (|x− y| ≤ rc). The long-ranged part T (F ) con-
verges rapidly when computed in Fourier space, where its Fourier coefficients T̂ (F )(k, ξ)
decay exponentially due to its smoothness,

T̂ (F )(k, ξ) ∼ e−k2/4ξ2
. (69)
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The Fourier expansion is truncated at a maximum wave number K = maxk ‖k‖∞ and
computed using the spectral Ewald (SE) method [23, 24], which uses a fast Fourier
transform (FFT) to compute the long-range interactions to spectral accuracy. In [2] we
describe in detail how this is done for the stresslet, and provide accurate truncation error
estimates which can be used for selecting the Ewald parameter ξ and the cutoffs rc and
K. The equivalent development for the stokeslet and rotlet singularities are available in
[23] and [1]. Computing T (F ) using the SE method and only computing T (R) for near
neighbors gives a method with O(N logN) complexity, where N is the total number of
degrees of freedom when the number of particles in the system is increased, under the
assumption that the average number of near neighbors of each discrete point is kept
constant [2].

5.1. QBX and Ewald summation

In section 3 we developed a framework for computing the double layer potential (8)
to high accuracy for both the singular and nearly singular cases, based on an expansion
for the stresslet T = rirjrk/r

5. When computing the periodic double layer potential
(65) using Ewald summation, we have split the stresslet into a short-ranged part T (R)

and a long-ranged part T (F ) (67). The explicit form of the short-ranged part is [2]

T
(R)
jlm(x,y, ξ) =− 2

r4

(
3

r
erfc(ξr) +

2ξ√
π

(3 + 2ξ2r2 − 4ξ4r4)e−ξ
2r2

)
rjrlrm

+
8ξ3

√
π

(2− ξ2r2)e−ξ
2r2

(δjlrm + δlmrj + δmjrl),

(70)

where r = x−y and r = |r|. All of the singular behavior of the stresslet is contained in
T (R), since a series expansion of T (R) in the limit of r → 0 shows that

lim
x→y

[
T (x,y)− T (R)(x,y, ξ)

]
= 0. (71)

This means that we need a way of using QBX for evaluating the short-ranged potential,
which we define as

D(R)
i [Γ, q](x) =

∫
Γ
T

(R)
ijk (x,y, ξ)qj(y)nk(y)dSy. (72)

Deriving a local expansion for T (R), as defined in (70), is a daunting proposition. Instead,
we rewrite the short-ranged potential as

D(R)
i [Γ, q](x) =

∫
Γ
Tijk(x,y)qj(y)nk(y)dSy (73)

−
∫

Γ

[
Tijk − T

(R)
ijk

]
︸ ︷︷ ︸

T
(F )
ijk

(x,y, ξ)qj(y)nk(y)dSy. (74)

The first term is now the ordinary double layer potential (8), for which we can use our
existing QBX framework. The second term is the smooth and long-ranged part of the
potential, which we can evaluate using our direct quadrature rule. In our implementation
we use (74) together with QBX if x is close to or on Γ, and (72) truncated at rc otherwise.
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5.2. Computational complexity

We now consider a system of M particles with N degrees of freedom each, which
we solve using our accelerated QBX scheme combined with SE. The computational
complexity of solving this system then has three distinct components: (i) the interac-
tions of particles with themselves (the self-interactions), (ii) the nearly singular interac-
tions between particles, and (iii) the well-separated interactions. The self-interactions
are completely precomputed, and can therefore be evaluated at a O(MN2) cost. The
nearly singular interactions use the precomputed M j

i -matrices, and contribute with a
O(p2MN2) cost, p being the QBX expansion order and the leading constant depending
strongly on the interparticle spacing. The well-separated interactions are handled by
SE, at a cost which scales as O(MN log(MN)) as we increase the size of the particle
system. This puts the total computational complexity at

O(MN2) +O(p2MN2) +O (MN log(MN)) . (75)

For a given particle system with fixed N , p and average interparticle spacing, the cost
then grows as O(M logM) as the system size is increased by increasing the number of
particles M .

6. Numerical results

We can now summarize our numerical scheme as follows:

• Spheroidal grid: For a spheroidal body with axes a and c, we introduce a
spheroidal grid (section 3.1) of dimensions N = nθ × nϕ. For a system with
M particles, an identical grid is used for each particle.

• QBX: We place expansion centers ci (42) at a normal distance r from the grid
points xi, and use an order p local expansion (section 3.2) to evaluate the double
layer potential (8) in the vicinity of each expansion center. The expansion is
computed using a factor κ upsampled grid. The QBX computations are accelerated
by the precomputation scheme of section 4.

• Spectral Ewald: For periodic problems, we compute the velocity field by com-
bining QBX with a fast and spectrally accurate Ewald summation method (section
5).

• Solution: We solve the discrete system (26) with 3MN unknowns iteratively
using GMRES, with the left hand side computed using QBX and Ewald.

• Preconditioning: For systems with many particles, we construct a simple block-
diagonal preconditioner by computing the explicit inverse of the corresponding
single-particle system and using it to create the diagonal blocks (through rotation).
This requires (3N)2 memory storage, but reduces the number of iterations by as
much as a factor three for some problems.
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This scheme allows us to efficiently compute the Stokes flow around systems of particles
where the particles are very close to each other, and also to accurately evaluate the flow
everywhere in the domain. An example is shown in Figure 6, where one can clearly see
the benefit using QBX when evaluating the potential close to the particles.

(a) Error using direct quadrature. (b) Error using QBX.

Figure 6: Example of quadrature error (vs. a numerically obtained reference solution) when evaluating
the flow around two close particles, with and without QBX. The particles are oblates, a/c = 2, with a
20× 40 grid and QBX parameters r/h = 1.5, κ = 10 and p = 30.

The method has currently been implemented in MATLAB, with time-critical com-
ponents written in C and called through the MEX interface. Currently only the SE
implementation is available as open source [22], though the authors plan to release the
full implementation at a future date. All tests are run on a regular workstation with a
3.4 GHz quad-core Intel Haswell CPU. For the large system in section 6.2 (131 particles,
1800 points/particle, p = 30) singular interactions are evaluated at about 1000 tar-
gets/second and nearly singular interactions at about 250 targets/second. A full matvec
including the local QBX treatment and the spectral Ewald method on the full set of
points takes 2–3 minutes.

6.1. Validation

To validate that our method is correct, we have compared it against several analytical,
semi-analytical and numerical results. For a single particle in free space, analytic results
are available in Chwang & Wu [12, 11] and Jeffery [19]. Figure 4 shows an example of a
comparison against [12]. For systems of three spheres in free space, semi-analytic results
for several configurations are available in Wilson [36]. For a periodic array of spheres,
numeric results are available in Zick & Homsy [39] and Sangani & Acrivos [32]. The
described method can solve all these problems to arbitrary accuracy, provided that the
grid is fine enough to represent the solution, and that the QBX parameter selection of
section 3.7 is followed. We will below discuss results for a three-sphere system and for a
periodic array of spheres.

Our implementation of the method has also been used in a separate work by Bagge
[5], where it was thoroughly validated against the solutions by Chwang [11] and Jeffery
[19].

22



6.1.1. Triangle of spheres

To test the ability of our method to resolve particle interactions in the lubrication
limit, we set up the following test case from Wilson [36]: Three spheres of radius a are
arranged in an equilateral triangle with sides sa, s > 2. A force of magnitude 6µπa is
applied to sphere 1 towards the centroid of triangle, pushing the sphere into the other
two spheres. An example of this geometry for s = 2.1 is shown in Figure 7. The following
quantities are measured:

• Velocity U1 of sphere 1, in direction of force.

• Velocity U2 of spheres 2 and 3, in direction of force.

• Velocity U3 of spheres 2 and 3, in direction perpendicular to force.

• Angular velocity aΩ of spheres 2 and 3.

Wilson Current method
s U1 U2 U3 Ω U1 U2 U3 Ω

2.01 0.65528 0.63461 0.00498 0.037336 0.65501 0.63424 0.00201 0.036978
2.10 0.73857 0.59718 0.03517 0.052035 0.73857 0.59718 0.03517 0.052036
2.50 0.87765 0.49545 0.07393 0.045466 0.87765 0.49545 0.07393 0.045466
3.00 0.93905 0.41694 0.07824 0.035022 0.93905 0.41694 0.07824 0.035022

Table 1: Translational and angular velocities for triangle of spheres, computed using 64×64 grid, r/h = 3,
κ = 5 and p = 20. Deviations from reference results by Wilson [36] are underlined.

As can be seen in Table 1, we are able to reproduce the results by Wilson to high
accuracy for s ≥ 2.10 using a 64× 64 grid. For s = 2.01 the results are inaccurate even
though the quadrature is accurately resolved everywhere, and a finer grid is required if
the results are to be improved. This is because the double layer density q gets sharply
peaked as the particles get close to each other, with a peak that has spatial scale O(d1/2)
when the separation distance is d [6, 33], and we can not hope to get good results if our
grid is too coarse to resolve the density. The problem is therefore one of resolution, not
quadrature. To solve the problem efficiently as s → 2, an adaptive refinement strategy
for the surface grid would be required.

6.1.2. Periodic array of spheres

As a validation test for our periodic computations, we consider a periodic array of
spheres of radius a arranged in a simple cubic lattice. This is modeled using a single
sphere in a cubic box with sides L. We subject the sphere to an external force, and
solve the mobility problem to get its velocity for various values of the concentration
ρ = 4πa3/3L3. We then compute the dimensionless drag coefficient K = F/6πaU and
compare it to the results available from Sangani & Acrivos [32]. Using a 30×30 grid and
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Figure 7: Flow velocity around triangle of spheres at configuration s = 2.1. Sphere 1 is the top sphere.
A feature of boundary integral methods is that once the solution q is known, it is possible to zoom in
and study the details of the flow field everywhere, as is done here in the right picture.

tuning all parameters (QBX+Ewald) for a tolerance of ε = 10−7, we get the results shown
in Figure 8. Our results are identical to the reference results in all the digits presented
in [32], all the way up to the limit ρ = ρmax, where the spheres touch (L = 2a). Our
results for K also agree in all six decimals with the series expansion in χ = (ρ/ρmax)1/3

published in [32, eq. 60], up to and including χ = 0.5, after which the series expansion
loses precision.

6.2. Application: Porous media flow

As a demonstration of a possible application for our method, we consider a periodic
cell of dimensions 40×15×15 containing 131 randomly positioned, oblate particles with
size (a, c) = (2, 1), for a volume particle concentration of about 24%. This system can
be used as a model of a three-dimensional porous medium with non-spherical grains. To
this end, we set a background flow ubg = (1, 0, 0) and solve the resistance problem for
fixed particle positions. We use a 30× 60 grid and tune our parameters for a tolerance
ε = 10−4. The resulting system has 707,400 unknowns and is solved in about 2 hours
using our current implementation and hardware.

Once we have the solution q on the particles, it easy to evaluate the velocity field
anywhere in the domain. We can then place a Lagrangian point randomly in the domain
and let it be advected by the flow, using a high-order ODE solver (MATLAB’s ode45).
Doing this for a few particles as they pass through the domain allows us to draw the
streamlines of Figure 9a. Doing this for many (∼ 100) particles over a long time interval
(t ∈ [0, 103]), it is possible to extract statistics about the flow. We shall here perform an

24



(a) Simple cubic array.

χ K Kref

0.3 1.699884 1.7000
0.4 2.151801 2.1518
0.5 2.842022 2.8420
0.6 3.973781 3.9738
0.7 6.004034 6.004
0.8 10.054098 10.05
0.9 19.161078 19.16
0.95 27.918287 27.9
1.00 42.102343 42.1

(b) Dimensionless drag.

Figure 8: Dimensionless drag coefficient K for a simple cubic array of spheres, compared to reference
results from [32]. The dimensionless parameter χ = (ρ/ρmax)1/3 measures how close the configuration is
to the touching configuration (χ = 1).

analysis that closely follows that by de Anna et al. [13] for a two-dimensional medium
with circular grains. Our intention here is not to draw any new conclusions about this
particular case, only to show that our method makes the analysis possible and that the
results correspond to those in [13].

(a)
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1/2

t/tA

(b)

Figure 9: (a) Streamlines around a periodic system with 131 oblate particles. (b) Mean-squared dis-
placement in longitudinal (σx) and transversal (σyz) directions. The transition from linear to square
root (Fickian) scaling appears to begin around t = tA.

The hydrodynamic particle dispersion can be measured through the particle dis-
placement ∆xi(t) = xi(t)−xi(0). Computing the variance of the displacement2, σ2

xi(t) =〈
[∆xi(t)− 〈∆xi(t)〉]2

〉
, we can study the longitudinal displacement in σ2

x and the transver-

2Brackets denote average over all Lagrangian particles.
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sal displacement in σ2
yz := σ2

y +σ2
z . These are shown in Figure 9b, with time normalized

by tA = d/v, the mean particle diameter over the mean velocity. Both σx and σyz can
be seen to have an initial linear growth, until entering a transition regime beginning at
t = tA, after which the growth approaches a rate proportional to t1/2 (this is known as
the Fickian regime). This is consistent with [13].
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Figure 10: Probability density function of the normalized longitudinal Lagrangian velocity increments
∆τu/σ∆u(τ) when τ < tA and τ > tA. Clearly, a transition occurs around τ = tA.

For a given time lag τ , the longitudinal Lagrangian velocity increment is defined
as ∆τu = u(t + τ) − u(t). The probability density function of the velocity increment,
normalized by its standard deviation, is shown in Figure 10 for two different time lags.
For large time lags (τ � tA) the distribution approaches the Gaussian distribution,
while for small time lags (τ < tA) the distribution is similar to that of the correlated
continuous time random walk (CCTRW) model in de Anna [13].

7. Conclusions

We have in this paper presented a complete boundary integral framework for sim-
ulating periodic Stokes flow around spheroidal bodies. It is based on representing the
flow using the Stokes double layer potential, which results in a well-conditioned system
that converges rapidly when solved using GMRES. Singular and nearly singular integrals
are computed using QBX, which we have adapted for the double layer potential. This
allows us to evaluate the velocity to high accuracy everywhere in domain, such that we
can have accurate quadrature also for nearly touching geometries. By exploiting the
symmetries of the spheroidal bodies, we have been able to develop a precomputation
scheme that minimizes storage requirements, while allowing us to rapidly compute the
potential using QBX. By integrating the precomputed QBX with a fast and spectrally
accurate Ewald summation method, we get a fast method which scales favorably as we
go to systems with many particles.

The results presented in section 6 show that our method is able to accurately solve
reference problems available in the literature. The example involving a porous media
model also indicates that our method could be useful when studying such models, with
both spherical and non-spherical grains. A natural application extension of our method
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would be to use it also for moving rigid particles, for example by studying sedimentation
in particle suspensions, as was done in [2]. Then particles can come arbitrary close to
each other, so close that lubrication forces start to dominate. This is not an issue for
our quadrature, but may cause the double layer density to be sharply peaked, as we saw
in the example in section 6.1.1. To deal with such cases, one could either (i) introduce
an adaptive surface quadrature, that is able to resolve the density peak using a limited
number of surface nodes, or (ii) couple the method to a lubrication model that removes
the need for the double layer potential to resolve the strong interactions [21, 25, 26, 33].
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Appendix A Precomputing QBX on a spheroidal grid

In this appendix we develop the details of how to accelerate QBX for the double
layer potential on a spheroidal grid by exploiting symmetries of the grid. To derive
the expressions that we need, we first consider acceleration on a spheroidal grid for the
Laplace potentials.

A.1 Symmetries in precomputed layer potentials

We begin by considering a general, scalar layer potential from a radially symmetric
kernel K, integrated over a surface Γ together with a scalar density q,

u(x) =

∫
Γ
K(x− y)q(y)dSy. (A.1)

The surface is discretized using a spheroidal grid, as defined in section 3.1, which gives
us N = nθnϕ points x1, . . . ,xN on the surface. At each point we have a discrete density
qi = q(xi). All density values are stored in the vector Q ∈ RN ,

Q =



q(x1)

...

q(xN )


=



q(θ1, ϕ1)
q(θ2, ϕ1)

...
q(θnθ , ϕ1)
q(θ1, ϕ2)

...
q(θnθ , ϕnϕ)


. (A.2)

The discrete approximation of the layer potential is then

uh(x) =

N∑
i=1

K(x− xi)qiwi. (A.3)
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When solving a boundary integral equation, we typically need to compute the potential
at all the points xi on the surface,

uh(xi) =
N∑
j=1

K(xi − xj)qjwj , i = 1, . . . , N, (A.4)

which we can write more compactly as

U = AQ, (A.5)

where A ∈ RN×N is a (typically) full matrix and U ∈ RN is the layer potential at all
the points on the surface, Ui = u(xi).

A.1.1 Rotational symmetry

Now, since the spheroid is rotationally symmetric and we use the trapezoidal rule
with uniform spacing in the azimuthal direction, the grid will look identical from the
point of view of all points which lie on the same latitude (θ). If we denote the rows of
A by Ri , i = 1, . . . , N , then this must mean that rows i and i + nθ contains the same
information, and differ only by a permutation. This can be viewed as Ri and Ri+nθ being
stencils that cover the spheroidal grid in the θ-ϕ-plane. Having their target point at the
same θ-coordinate they then have identical coefficients, but they differ by a permutation
due to the periodic wrap-around at φ = 2π.

We introduce the permutation τn(Q) 3,

(τn(Q))i = Qσn(i), σn(i) = (i+ n− 1 mod N) + 1, (A.6)

such that

τn(Q) =



Q1+n
...
QN
Q1
...
Qn


. (A.7)

We represent this permutation using a (sparse) N ×N matrix Pn,

τn(Q) = PnQ. (A.8)

For 1 ≤ i ≤ nθ we then have that

u(xi) = Riq, (A.9)

u(xi+nθ) = RiPnθq, (A.10)

u(xi+2nθ) = RiP
2
nθ
q, (A.11)

. . . , (A.12)

3mod(a, b) refers to the operation a modulo b, which returns the remainder of the division of a by b,
s.t. 0 ≤ mod(a, b) < b.
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which we can summarize as

Ri+αnθ = RiP
α
nθ
, i ∈ [1, nθ]. (A.13)

So we only need to store the first nθ rows of A, as the remaining ones are given by
successive permutations of that set. This reduces our memory use from N × N to
nθ ×N .

A.1.2 Mirror symmetry

For the rotational symmetry we could show that we only need to store coefficients
related to the first nθ points in order to make computations for all nθ × nϕ points.
An additional reduction can be made by observing that the spheroidal grid also has a
mirror symmetry around its equator. This means that we can use coefficients related to
target points on the northern hemisphere to make computations for target points on the
southern hemisphere. Hence, we only need to store the first nθ/2 rows of the matrix A
in memory to be able to compute U from Q.

Mathematically this is done for the current ordering of points by introducing a mir-
roring permutation matrix Fnθ such that

FnθQ =



Qnθ
...
Q1

QN
...

Qnθ+1


. (A.14)

We can then recover rows nθ/2 + 1, . . . , nθ by using rows 1, . . . , nθ/2,

Ri = Rnθ−i+1Fnθ , i ∈ [nθ/2 + 1, nθ], (A.15)

and from there recover all the rows of the matrix using the rotational symmetry. For
notational simplicity we here assume nθ to be even, extending to odd nθ is trivial.

A.2 Precomputing QBX

Now we have established the symmetries available when evaluating a layer potential
on a spheroidal grid. We will now see how those can be used in conjunction with QBX,
to create a fast method.

A.2.1 Laplace single layer potential

We begin by considering the Laplace single layer potential, having kernel K(r) =
|r|−1, as the analysis is simplified by all the involved quantities being scalar. Using the
Laplace expansion (31) about an expansion center c, the potential

u(x) =

∫
Γ

q(y)

|x− y|
dSy, (A.16)
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can be written as

u(x) =
∞∑
l=0

l∑
m=−l

rlxY
−m
l (θx, ϕx)zlm(c), (A.17)

where the expansion coefficients are computed as

zlm(c) =
4π

2l + 1

∫
Γ

q(y)

rl+1
y

Y m
l (θy, ϕy)dSy. (A.18)

When this is done discretely on a spheroidal grid, there is a series of steps involved. The
first step is to create a fine grid by increasing the number of grid points by a factor κ
in each direction, so that we get a grid with points x̃i, i = 1, . . . , κ2N . The density is
upsampled to the fine grid by a suitable interpolation scheme, which is represented as
the matrix operation

Q̃ = UQ, U ∈ Rκ
2N×N . (A.19)

In the second step, we use the upsampled density to compute the local expansion co-
efficients up to order p at expansions points ci (located at a distance r in the normal
direction from xi),

zlm(ci) =

κ2N∑
n=1

q̃nw̃n
1

rl+1
n

Y m
l (θn, ϕn), (A.20)

where w̃n is the quadrature weight at x̃n and (rn, θn, ϕn) = x̃n − c. This gives us for
each point ci a coefficient vector z(ci) ∈ CNp ,

z(ci) =


z0,0(ci)
z1,0(ci)
z1,1(ci)

...
zp,p(ci)

 , (A.21)

where Np = (p2 + 3p+ 2)/2 is the total number of coefficients at each expansion center
that we need to store4. In matrix notation we write this as

z(ci) = SiQ̃ = SiUQ = MiQ, (A.22)

where

Si ∈ CNp×κ
2N , (A.23)

Mi ∈ CNp×N . (A.24)

4As mentioned in section 3.3, the coefficients for negative m need not be stored, since zl,−m = z∗lm
for a real density.
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As the third step, we let the vector s(xi) ∈ CNp contain the coefficients for evaluating
the expansion at ci,

s(si) =


s0,0(xi)
s1,0(xi)
s1,1(xi)

...
sp,p(xi)

 , slm(xi) =

{
1
2r
l
xY

m
l (θx, ϕx), if m = 0,

rlxY
m
l (θx, ϕx) if m > 0

, (A.25)

such that, using (Y m
l )∗ = Y −ml , we can write

u(xi) =

p∑
l=0

l∑
m=0

(slm(xi)
∗zlm(c) + slm(xi)zlm(c)∗). (A.26)

Defining the conjugate product

〈x,y〉 = (x∗)Ty + xTy∗, (A.27)

we can write this as

u(xi) = 〈s(xi), z(ci)〉. (A.28)

Putting (A.22) and (A.28) together, we can conclude that the matrix Ri, such that
u(xi) = Riq, is given by

Ri = s(xi)
∗,TMi + s(xi)

TM∗i , i = 1, . . . , N. (A.29)

This Ri has the symmetries discussed in section A.1. From rotation and mirroring when
then have

Ri = Rnθ−i+1Fnθ , i ∈ [nθ/2 + 1, nθ], (A.30)

Ri+αnθ = RiP
α
nθ
, i ∈ [1, nθ], (A.31)

such that it is enough to directly compute Ri, . . . , Rnθ/2, as the remaining Ri can be
recovered through these operations.

The symmetries that apply to the rows Ri also apply to the matrices Mi, such that we
can compute the coefficients at all expansion centers using Mi for the first nθ expansion
centers. Here, however, it is not enough to permute the right hand side vector; we also
need to account for the phase of the factor eimϕ in the spherical harmonic. An expansion
center ci+nθ will ”see” all the grid points in the same angles ϕ as an expansion center ci
does, plus a rotation of ∆ϕ. To account for this rotation, we introduce a phase matrix
E ∈ CNp×Np with diagonal elements

Ejj = eim∆ϕ. (A.32)
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For 1 ≤ i ≤ nθ this lets us write

z(ci) = MiQ, (A.33)

z(ci+nθ) = EMiPnθQ, (A.34)

z(ci+2nθ) = E2MiP
2
nθ
Q, (A.35)

. . . , (A.36)

and

s(xi+nθ) = s(xi)E (A.37)

s(xi+2nθ) = s(xi)E
2 (A.38)

. . . , (A.39)

which can be summarized as

Mi+αnθ = EαMiP
α
nθ
, (A.40)

s(xi+αnθ) = s(xi)E
α. (A.41)

From this we can recover the original rotational symmetry of Ri,

Ri+αnθ = s(xi+αnθ)
∗Mi+αnθ + s(xi+αnθ)M

∗
i+αnθ

(A.42)

= (s(xi)E
α)∗EαMiP

α
nθ

+ s(xi)E
α
(
EαMiP

α
nθ

)∗
(A.43)

= s(xi)
∗MiP

α
nθ

+ s(xi)M
∗
i P

α
nθ

(A.44)

= RiP
α
nθ
, (A.45)

since E∗E = EE∗ = I.
To also make use of the mirror symmetry for Mi, we have to keep in mind that the

mirroring operation makes an expansion center cnθ/2+i ”see” the other grid points in a
coordinate system which has been rotated 180◦ about the x-axis, compared to what ci
sees. This amounts to θ and ϕ in (A.20) having counterparts θ′ = −θ and ϕ′ = −ϕ in
the mirrored system. Inserting this into the relevant terms in (A.20), we see that

Y m
l (θ′, ϕ′) = P̃ml (cos θ′)eimϕ

′
= P̃ml (− cos θ)e−imϕ. (A.46)

Changing sign in the exponential is equal to taking the complex conjugate of the entire
expression. To handle the change of sign in the argument of the associated Legendre
polynomial, we apply the parity relation available in Arfken & Weber [4, p. 776],

Pml (−x) = (−1)l+mPml (x). (A.47)

Defining the diagonal matrix Θ ∈ RNp×Np such that

Θjj = (−1)l+m, (A.48)

where l = l(j) and m = m(j) as j = 1, . . . , Np, we finally arrive at the relation

Mi = ΘM∗nθ−i+1Fnθ , i ∈ [nθ/2 + 1, nθ], , (A.49)

which allows us to compute all expansion coefficients for all expansion points using
precomputed results for the first nθ/2 points.
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A.2.2 Dipole potential

We will now extend the above results for the Laplace single layer potential to the
dipole potential, defined in (32) for a vector density q as

L [Γ, q] (x) :=

∫
Γ
q(y) · ∇y

1

|x− y|
dSy. (A.50)

A discrete quadrature by expansion for this potential is formed from the expressions (33)
and (34). We store the pointwise vector densities in linear form in Q ∈ R3N ,

Q =

Q1

Q2

Q3

 , where Qj =

 qj(x1)
...

qj(xN )

 . (A.51)

Just as for the single layer potential, the expansion coefficients are computed using an
upsampled density Q̃, which here is computed as

Q̃ = (I3 ⊗ U)Q, (A.52)

where ⊗ is the Kronecker product. The expansion coefficients are here computed as

zlm(c) =

κ2N∑
n=1

w̃nq̃(x̃n) · ∇x̃
1

rl+1
Ỹ m
l (θn, ϕn). (A.53)

This can be represented in matrix form as

z(ci) = Si(I3 ⊗ U)Q = MiQ, (A.54)

where

z(ci) ∈ CNp , (A.55)

Mi ∈ CNp×3N . (A.56)

The difference from the single layer case is that the matrix Si ∈ CNp×3κ2N here includes
the gradient of the spherical harmonic on the surface. Evaluation of the expansion is
identical to the single layer case (A.28),

u(xi) = 〈s(xi), z(ci)〉, (A.57)

with s(xi) defined as in (A.25), and Ri given by

Ri = s(xi)
∗,TMi + s(xi)

TM∗i , i = 1, . . . , N. (A.58)

Due to the density now being vector-valued, there is difference between the single
layer potential and the dipole potential in how we can make use of the grid symmetries.
To reuse Mi of the first nθ points by rotational symmetry we must now not only take
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the permutation Pnθ into account, but also the rotation of the frame of reference, since
Q now represents a quantity which is pointwise vector-valued. Introducing the rotation
matrix Tz,

Tz(α) =

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

 , (A.59)

the rotation of Mi can be formulated as

Mi+αnθ = EαMi (Tz(−∆ϕ)⊗ Pnθ)
α . (A.60)

Similarly, for the mirror symmetry we must take the 180◦ rotation about the x-axis into
account. Representing this by the rotation matrix

Tx =

1 0 0
0 −1 0
0 0 −1

 , (A.61)

we arrive at the expression

Mi = ΘM∗nθ−i+1(Tx ⊗ Fnθ), i ∈ [nθ/2 + 1, nθ], (A.62)

for the mirror symmetry. These results also carry over to the symmetry relations for Ri,

Ri = Rnθ−i+1(Tx ⊗ Fnθ), i ∈ [nθ/2 + 1, nθ], (A.63)

Ri+αnθ = Ri (Tz(−∆ϕ)⊗ Pnθ)
α , i ∈ [1, nθ]. (A.64)

A.2.3 Gradient of expansion

To compute the gradient of a (single or double layer) potential that is locally rep-
resented by a local expansion at c, we differentiate (A.28) or (A.57) with respect to
x,

∇u(x) = 〈g(x), z(c)〉, (A.65)

where g(x) ∈ C3×Np has elements

gij(x) =
∂

∂xi
sj(x). (A.66)

We can also write

∂

∂xi
u(x) = 〈gi(x), z(c)〉, (A.67)

where gi(x) ∈ CNp ,

gi(x) =
∂

∂xi
si(x). (A.68)
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If we want to reuse g(xi) from the first nθ points for the remainder of the points, we
have to take into account that the output is vector-valued and has to be rotated into
the correct frame of reference. So, if we have the entire process condensed into the form

∇u(xi) = Riq, 1 ≤ i ≤ nθ, (A.69)

then

∇u(xi+αnθ) = Tαz (∆ϕ)RiP
α
nθ
q, 1 ≤ α < nϕ. (A.70)

For the mirror symmetry we get

∇u(xnθ/2+i) = TxRnθ/2−i+1Fnθ , 1 ≤ i ≤ nθ/2. (A.71)

A.2.4 Stokes double layer potential

We now turn to our potential of interest, the Stokes double layer potential (8),

Di [Γ, q] (x) =

∫
Γ
Tijk(x,y)qj(y)nk(y)dSy. (A.72)

Our goal is now to derive the matrix representations necessary for precomputing QBX
for this potential on a spheroidal grid. We have from (38) that the we can represent the
double layer potential as a combination of dipole potentials,

Di [Γ, q] (x) =

(
xj

∂

∂xi
− δij

)
L [Γ, qjn+ njq] (x)

− ∂

∂xi
L [Γ, ykqkn+ yknkq] (x)

, (A.73)

which means that we can derive the expressions needed for the double layer potential
using the results derived so far in sections A.2.1– A.2.3. Taking (A.73) apart, we get

Di [Γ, q] (x) =

(
xj

∂

∂xi
− δij

)
uj(x)− ∂

∂xi
u4(x), (A.74)

where

uj(x) = L [Γ, qjn+ njq] (x) , j = 1, . . . , 3, (A.75)

u4(x) = L [Γ, ykqkn+ yknkq] (x) . (A.76)

When computing these components on a spheroidal grid, we can improve the accuracy
by taking into account that the geometrical quantities n and y are explicitly known, such
that we only need to upsample the density q. Using (A.54), the expansion coefficients
at a center c for the components u1–u4 are then given by

zj(c) = S(c)
[
ÑTUQj +

(
I3 ⊗ (diag(Ñj)U)

)
Q
]
, j = 1, 2, 3, (A.77)

z4(c) = Si(c)
[
ÑT X̃(I3 ⊗ U) + (I3 ⊗ P̃U)

]
Q, (A.78)

35



where the geometrical quantities on the fine grid are given by

X̃j =

 (x̃1)j
...

(x̃κ2N )j

 , Ñj =

 (ñ1)j
...

(ñκ2N )j

 (A.79)

and

Ñ =
(

diag(Ñ1) diag(Ñ2) diag(Ñ3)
)
, (A.80)

X̃ =
(

diag(X̃1) diag(X̃2) diag(X̃3)
)
, (A.81)

P̃ = diag (x̃1 · ñ1, . . . , x̃κ2N · ñκ2N ) . (A.82)

From the coefficient vectors z1–z4 at c, the double layer potential at a point x can be
computed as

Di [Γ, q] (x) = 〈xjgi(x)− δijs(x), zj(c)〉 − 〈gi(x), z4(c)〉, (A.83)

where the evaluation vectors s(x) and gi(x) are as defined in (A.25) and (A.68).
For the points xi and centers ci related to the spheroidal grid, the operations

(A.77), (A.78) and (A.83) can be represented using a set of transfer matrices M1−4
i ∈

CNp×3N and Ri ∈ R3×3N , such that

zj(ci) = M j
i Q, j = 1, 2, 3, 4, (A.84)

D [Γ, q] (xi) = RiQ, (A.85)

where i = 1, . . . , N . We can, just as for the single layer and dipole potentials, compute
the matrices Ri and M j

i for all points by applying rotation and mirror operations to the
matrices from the first nθ/2 points. For Ri, we can combine (A.63), (A.64), (A.70) and
(A.71) directly to get

Ri = TxRnθ−i+1(Tx ⊗ Fnθ), i ∈ [nθ/2 + 1, nθ], (A.86)

Ri+αnθ = Tαz (∆ϕ)Ri (Tz(−∆ϕ)⊗ Pnθ)
α , i ∈ [1, nθ]. (A.87)

For the matrices M j
i , we need to take into account that M1

i –M3
i are directly related

to the coordinate directions x,y and z. This means that when applying the symmetry
operations to these matrices, we have to take this into account. For the mirror symmetry
we then get

M1
i = ΘM1,∗

nθ−i+1(Tx ⊗ Fnθ),

M2
i = −ΘM2,∗

nθ−i+1(Tx ⊗ Fnθ),

M3
i = −ΘM3,∗

nθ−i+1(Tx ⊗ Fnθ),

M4
i = ΘM4,∗

nθ−i+1(Tx ⊗ Fnθ),

i ∈ [nθ/2 + 1, nθ], (A.88)
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while for the rotational symmetry

M1
i+αnθ

= Eα
(
cos(α∆ϕ)M1

i − sin(α∆ϕ)M2
i

)
(Tz(−∆ϕ)⊗ Pnθ)

α ,

M2
i+αnθ

= Eα
(
sin(α∆ϕ)M1

i + cos(α∆ϕ)M2
i

)
(Tz(−∆ϕ)⊗ Pnθ)

α ,

M3
i+αnθ

= EαM3
i (Tz(−∆ϕ)⊗ Pnθ)

α ,

M4
i+αnθ

= EαM4
i (Tz(−∆ϕ)⊗ Pnθ)

α .

(A.89)

With this we have all we need for using precomputed QBX on a spheroidal grid, while
only storing precomputed data for the first nθ/2 points.
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[17] É. Guazzelli and J. Hinch. Fluctuations and Instability in Sedimentation. Annu.
Rev. Fluid Mech., 43(1):97–116, 2011, doi:10.1146/annurev-fluid-122109-160736.

[18] J. Helsing and R. Ojala. On the evaluation of layer potentials close to their sources.
J. Comput. Phys., 227(5):2899–2921, 2008, doi:10.1016/j.jcp.2007.11.024.

[19] G. B. Jeffery. The Motion of Ellipsoidal Particles Immersed in a Viscous
Fluid. Proc. R. Soc. A Math. Phys. Eng. Sci., 102(715):161–179, 1922,
doi:10.1098/rspa.1922.0078.
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